Environment

Q1) What proportion of the UK’s greenhouse gas emissions come from transport and how much of that is from cars?

Q2) How can we reduce road transport emissions?

Q3) Are road traffic emissions forecast to fall?

Q4) What are the future limits for CO2 emissions for new cars?

Q5) How much CO2 does the average new UK car produce and will the 2021 target be met?

Q6) How much CO2 does the average car in the UK car parc produce?

Q7) What are ultra-low emission vehicles?

Q8) How many alternative fuel vehicles are licensed?

Q9) Where can I find a database of all publicly-funded electric vehicle charge points?

Q10) How many Motorway Service Stations have electric vehicle charging points and what proportion of the motorway network lies within 20 miles of a charge point?

Q11) What proportion of the Strategic Road Network lies within 20 miles of an electric vehicle charge point?

Q12) How do you identify cars with the lowest CO2 emissions?

Q13) How can I cut my vehicle’s CO2 emissions when driving my car?

Q14) How is the vehicle tax rate for a car assessed?

Q15) How many licensed cars in Great Britain are in each CO2 emission band?

Q16) Has the new car market shifted into lower VED band vehicles in recent years?

Q17) What about local air pollutants?

Q18) What can be done to reduce or mitigate the impact of bad air?

Q19) What are the Government’s plans to improve air quality by reducing nitrogen dioxide levels in the UK?

Q20) Are there proposals to establish an Ultra Low Emission Zone in central London?

Q21) Is a new Emissions Surcharge (also known as the T-charge) to be introduced in London for vehicles not meeting minimum exhaust emission standards?

Q22) Are any other cities introducing Clean Air Zones?

Q23) What is the proportion of the new car market by fuel type?

Q24) What are the corresponding sales of petrol and diesel?

Q25) What is the UK’s average new car fuel consumption?

Q26) Are the manufacturers' official fuel economy figures accurate?

Q27) How can I check a vehicle’s average fuel consumption?

Q28) How many front gardens have been concreted over to provide parking for cars?

Q29) How many dropped kerb applications were approved in 2015? 

A1) In 2014, 23 per cent of UK domestic greenhouse gas (GHG) emissions (117.9 MtCO2) were from transport. (This is up from 15 per cent in 1990). The total net domestic emissions from all sources was 514.4 MtCO2.

93 per cent of the total domestic transport GHG emissions were from road transport. 58 per cent of domestic transport GHG emissions were from cars and taxis (similar to the 60 per cent in 1990); 16 per cent from HGVs (little changed from 1990); and 15 per cent from vans (an increase  from 10 per cent in 1990).

Source: Transport Statistics Great Britain 2016 and Department for Transport table TSGB0306

Back to top

A2) Road transport emissions can be reduced by:-

• Rapidly reducing emissions from vehicles with conventional Powertrains
• Dramatically reducing the greenhouse gas intensity of fuels and accelerating the transition to low carbon vehicles
• Developing smart infrastructure to support zero-carbon mobility
• Purposefully engineering cities and other spaces to support a near zero-carbon transport future

For more details, see the Imperial College briefing paper. The RAC Foundation has also produced a fact sheet on Cars and the Environment which contains further information on this subject. 

Back to top

A3) Yes. Despite total traffic being forecast to rise by between 19 - 55 per cent between 2010 and 2040, road traffic emissions are forecast to fall.

CO2 is forecast to fall by between 3 per cent and 26 per cent from 2010 to 2040. As would be expected the scenarios which result in greater levels of traffic result in higher emission forecasts. Significant fuel efficiency improvements in cars and Light Goods Vehicles are the main driver of this downward trend, though there is also an impact of increased biofuel blending in road transport fuel (biofuels are counted as zero emission at the tailpipe). Year on year fuel efficiency improvements start to flatten out between 2025 and 2030, after which traffic growth results in CO2 emissions starting to increase.

The forecast for NOx emissions is that these will decline by 65 per cent to 73 per cent between 2010 and 2040. Predictably the lower end of the range again relates to the lower demand scenarios. The steep downward path is relatively insensitive to the different range of traffic levels forecasted - the assumptions for declining emissions per vehicle mile expected to be achieved through European vehicle standards are much more important, and more than offset the increases in demand projected over most of the forecast period. It should be noted that this large reduction in NOx emissions relies on the effectiveness of the future European standards to control emissions under actual driving conditions and this large reduction may be an overestimate if the introduction of those standards is delayed.

PM10 emissions are forecast to reduce by 92 per cent to 94 per cent between 2010 and 2040. Again, the assumption of improvements in vehicle PM10 emissions through European vehicle standards dominates increases in demand, and the results are insensitive to the different forecast levels of traffic.

Source: Road Traffic Forecasts 2015

Back to top

A4) EU legislation sets mandatory emission reduction targets for new cars. The law required that new cars registered in the EU did not emit more than an average of 130 grams of CO2 per kilometre (g/km) by 2015.

By 2021, phased in from 2020, the fleet average to be achieved by all new cars is 95 g/km. 

Full details regarding these targets can be viewed here

Back to top

A5) UK average new car CO2 emissions have declined continuously in recent years. In 2016, UK average new car CO2 emissions fell for the 19th consecutive year to a new low of 120.1g/km. This was 33.6 per cent below the 2000 level of 181.0g/km and is down from 164.9g/km in 2007, a 27.2 per cent reduction. However, the reduction was a relatively modest 1.1 per cent on 2015’s 121.4g/km average. This was the slowest rate of decline since 2004 and is well below the 3.5 per cent averaged since 2008.

While the UK’s 2015 and 2016 performance bettered the pan European target of a 130g/km in 2015, achieving the 2021 target of 95g/km will be very challenging. It will require a 20.9 per cent cut in CO2 emissions over the next five years, or 4.6 per cent per annum. This is above the rate averaged since 2008, well above the 2016 rate of progress and has only been bettered in one year – 2009 (when the scrappage scheme was in effect) – in the UK to date. 

Source: SMMT New Car COReport 2017

Back to top

A6) The earliest Society of Motor Manufacturers and Traders (SMMT) estimate of the average car CO2 for all cars in circulation was 169.3g/km in 2010. In 2015 the average car in use emitted 153.0g/km, compared with 121.4g/km for a new car.  A new car is therefore more than 20 per cent more efficient than the average car in use.

If a car leaving the fleet (for example being scrapped) is assumed to be 14 years old, then a new car is almost a third more efficient. 

Source: SMMT New Car COReport 2017

Back to top

A7) The internal combustion engine has dominated road transport over the past Century but with a need to tackle climate change and a need to end our reliance on fossil fuels, there is an environmental and an economic imperative to do things differently.

The Government is supporting and encouraging UK industry to develop and manufacture ultra-low emission vehicles. The technologies being developed include:-

100 per cent Electric Vehicles

These vehicles are wholly driven by an electric motor, powered by a battery that can be plugged in to the mains. There is no combustion engine.

Plug-in Hybrid vehicles

Plug-in Hybrid vehicles combine both a plug-in battery pack and an electric motor with a traditional combustion engine. Both the electric motor and the internal combustion engine can drive the wheels.

Hydrogen and Fuel Cell vehicles

These vehicles run on compressed hydrogen fed into a fuel cell stack that produces electricity to power the vehicle. A fuel cell can also be used in combination with an electric motor to drive a vehicle.

 Other gas-fuelled vehicles

Various other gases can be used in an alternative combustion engine to provide motive power. These include: liquefied petroleum gas (LPG), and natural gas in compressed (CNG) or liquefied (LNG) forms and bio-gas (or bio-methane).

The Go Ultra Low website and the The SMMT Ultra Low Emission Vehicles Guide 2016 provides advice and information on Ultra-Low Emission Vehicles. 

Back to top

A8) At the end of 2016, there were 33,434 electric vehicles licensed - up from 24,603 at the end of 2015; 318,573 hybrid/electric vehicles licensed - up from 245,085 at the end of 2015; and 35,437 gas powered vehicles licensed (these include gas, gas bi-fuel, petrol/gas and gas-diesel) - down from 39,662 at the end of 2015. 

The data can be viewed in the Department for Transport table VEH0203.

Back to top

A9) At the National Charge Point Registry website.

Back to top

A10) Seventy service stations on England’s motorway network now have electric vehicle charge points. This equates to 72 per cent of the 97 Service Stations sited on the motorway network.

RAC Foundation analysis of data from the National Charge Point Registry shows that an electric vehicle driver will now be no more than 20 miles from a service station charge point on 98 per cent (1,831 miles out of 1,859 miles) of the motorway system in England. 

Source: RAC Foundation

Back to top

A11)  On the Strategic Road Network managed by Highways England – not just motorways but also major A roads – 82 per cent (3,845 miles out of 4,668 miles) of the system is within 20 miles of a charge point. 

Source: RAC Foundation

Back to top

A12) There is a tool on the gov.uk website to compare the fuel costs and CO2 emissions of new cars. 

As well as using less fuel and paying less car tax, more efficient cars also emit lower CO2 emissions. Car showrooms display fuel economy labels to show how fuel efficient each new car is. The labels make it easy to compare different car and show a rating from band A (green) to band G (red), with A being the most fuel efficient, and how much road tax is payable each year.

Back to top

A13) There are a few easy things that you can do when you drive and look after your car to help reduce the amount of fuel you burn and so cut down on CO2 emissions. The key is to reduce the amount of work your engine has to do, because the greater the workload, the more fuel is burned – so the higher the CO2 emissions. By following the smarter driving tips below you could cut your CO2 emissions by up to 15% – equivalent to an annual fuel saving of up to one month per year. 
 
Before you set off:-

  • Pump up your tyres
  • Clear out any extra weight
  • Have your vehicle serviced regularly
  • Remove any unused roof racks and roof boxes
  • Plan your route


While driving:-

  • Drive at an appropriate speed
  • Speed up and slow down smoothly
  • Change gears at lower revs
  • Avoid leaving your engine running
  • Don’t use air conditioning unless you really need it


Further advice can be found in the RAC Foundation's Eco-driving leaflet.

Back to top

A14) Car vehicle tax rates are based on either engine size or fuel type and COemissions, depending on when the vehicle was registered. (Other types of vehicle have their own rates).

1) For cars registered before 1 March 2001, the rate of vehicle tax is based on engine size. 

2) For cars registered between 1 March 2001 and 31 March 2017, the rate of vehicle tax is based on fuel types and CO2 emissions. The lower a car’s emissions, the lower the vehicle tax payable on it.

3) For cars registered after 1 April 2017, the rate of vehicle tax is based on a vehicle’s CO2 emissions the first time it is registered.

Full details can be viewed here.

Back to top

A15) The number, and percentages, of vehicles in each CO2 emission band can be viewed in Department for Transport table VEH0206.

Back to top

A16) Yes. The new car market has shifted into lower VED band vehicles in recent years.

Originally introduced with four bands, VED was broadened out to 13 bands in 2009, and in 2010 a differential first year rate was introduced. In 2016, 18.2 per cent of the market was below 100g/km and so in band A. In 2016, 74.8 per cent of the market was in bands A to D, up from 72.0 per cent in 2015 and just 10.6 per cent in 2007. These bands did not account for half of the market until 2012. Just 0.4 per cent of the market was in the top band, M and whilst this proportion is broadly unchanged since 2012, the level is almost a tenth of that seen in 2007. 

Source: SMMT New Car COReport 2017

Back to top

A17) It is estimated that in the UK poor air quality currently reduces average life expectancy at birth by six months. Transport is a major source of air pollution in the urban areas of the UK and much of Europe. As such, it has a significant role to play in reducing the risks to health, the environment and quality of life.

In the UK it is estimated that road transport contributes 20–30% of national emissions of air pollutants. However, it plays a much greater role in air pollution problems, because it is concentrated on the road network in the country’s towns and cities. Of the 600 local Air Quality Management Areas declared in the UK – areas which breach UK national air quality objectives – some 95% are a result of transport activity. The cost of this urban transport-related air pollution to human health is estimated at between £4.5 billion and £10 billion annually to the UK economy.

Road vehicles are responsible respectively for 33%, 15% and 18% of the total NOx, PM10 and PM2.5 emissions nationally. Whilst between 1998 and 2011, overall NOx emissions from road transport reduced by 60%, PM10 by 39% and PM2.5 by 46%, the change in emissions does vary between the vehicle types. NOx emissions from petrol cars have reduced by some 90% over this period, whereas emissions from diesel cars have actually risen by 250%. This dramatic difference is a result of a rapid growth in the number of diesel cars in the parc, and relatively higher NOx emissions of diesel vehicles compared to petrol vehicles. 

Source: Air Quality and Road Transport: Impacts and Solutions

Back to top

A18) Over the past two decades, consumers have increasingly been buying diesel cars because of the better fuel consumption they achieve compared to petrol powered cars and lower rates of Vehicle Excise Duty and company car tax incentives, which both reward low-CO2 options.

On a like for like basis, diesels emit fewer CO2 emissions than petrol cars. However, diesel cars have also historically tended to emit significantly more nitrogen oxide (NOx) than petrol cars which – along with particulate matter (PM) - is linked to poor air quality and health issues.

Over recent years so-called Euro standards have helped achieve significant reductions in PM emissions from both petrol and diesel cars. But, as far as diesels are concerned, these have not been matched by falls in NOx. Only now does the latest set of Euro 6 standards – and the forthcoming Euro 6c which will include measurements of real-world driving emissions as well as lab-based figures – offer the prospect of a reduction in this too. But because cars have an average life span of more than a decade it will take several years for the newer, cleaner, models to work their way through the fleet.

A 2014 report for the RAC Foundation by the environmental consultants Ricardo-AEA recommended Ministers should consider introducing a new scrappage scheme aimed at taking the oldest and most polluting diesel cars off the road. However, subsequent work by the RAC Foundation in March 2016 and March 2017 concluded that neither a national scrappage scheme nor a targeted scrappage scheme offered the realistic prospect of making a significant improvement to air quality on a cost effective basis. The problem is less about whether a diesel car is old, but more about where diesel cars are used and how much. In the absence of adequate location and mileage data designing a workable scheme would be very challenging.

Source: Road Transport and Air Pollution – Where are we now?

Back to top

A19) The UK Plan for Tackling Roadside Nitrogen Dioxide Concentrations produced by the Department for Environment, Food & Rural Affairs and the Department for Transport outlines how councils with the worst levels of air pollution at busy road junctions and hotspots must take robust action to reduce air pollution.

The report identifies 81 major roads in 17 towns and cities where urgent action is required because they are in breach of EU emissions standards. 29 local authorities are required to produce draft pollution reduction plans by the end of March 2018 and final plans in December 2018.

Councils have been asked to consider alternatives to charging drivers driving diesel cars but only if they are effective at reducing pollution quickly.

Plans were also announced to end to the sale of all new conventional petrol and diesel cars and vans by 2040.

Full details can be viewed here.

Back to top

A20) Yes. Transport for London have proposed that all cars, motorcycles, vans, minibuses, buses, coaches and heavy goods vehicles (HGVs) vehicles driving in central London will need to meet exhaust emission standards or pay an additional daily charge to travel.

The Ultra Low Emission Zone (ULEZ) will operate 24 hours a day, 7 days a week within the same area as the current Congestion Charging Zone.

The new London Mayor, Sadiq Khan, has recently announced further proposals regarding the introduction of the ULEZ. Proposals include:-

  • Introducing the central London ULEZ on 8 April 2019 (This is around 17 months earlier than the currently approved date of 7 September 2020).
  • Extending the ULEZ from Central London to London-wide for heavy vehicles (heavy goods vehicles (HGVs), buses and coaches) from 2020; and
  • Extending the ULEZ from Central London up to the North and South Circular roads for all vehicles that will be subject to the ULEZ in London from 2021.                                                                                                                                                                                                                                    

Full  details can be viewed here.    

Back to top    

A21) Yes. From 23 October 2017, cars, vans, minibuses, buses, coaches and heavy goods vehicles (HGVs) in central London will need to meet minimum exhaust emission standards, or pay a daily £10 Emissions Surcharge (also known as the Toxicity Charge, or T-Charge). This will be in addition to the Congestion Charge.

The Emissions Surcharge will mostly affect vehicles registered in, or before 2005. You can check if your vehicle will be required to pay the surcharge by entering your vehicle registration in the TfL compliance checker.

The T-Charge will be replaced by the ULEZ charge (see above) on 8 April 2019.

Further information about the Emissions Surcharge including discounts and exemptions can be viewed here.

Back to top                                                                           

A22) Yes. In December 2015, the Government announced plans to introduce Clean Air Zones in Birmingham, Leeds, Nottingham, Derby and Southampton by 2020.

In all five cities, old diesel buses, coaches, taxis and lorries will be discouraged from entering the zone through charges. In addition, Birmingham and Leeds will also discourage the most polluting diesel vans through charges. 

Full details can be viewed here.

Actions to put in place Clean Air Zones in the five cities named above are well advanced. Additionally, local authorities in Greater Manchester and in Bristol and South Gloucestershire have secured Air Quality Grant funding to develop Clean Air Zone proposals

Back to top

A23) The marketplace remains dominated by petrol and diesel variants, which collectively still accounted for nearly 97 per cent of new car registrations in 2016. However, the alternatively-fuelled vehicle (including hybrids) market share reached a new high of 3.3 per cent in 2016.

Diesel share of the new car market has fallen in each of the past two years, and fell 0.8 percentage points to 47.7 per cent share in 2016, despite a 0.6 per cent rise in registrations. (Diesel cars accounted for just 14.1 per cent of the market in 2000). The shift to alternatively-fuelled vehicles, as well as other market factors, has caused this shift.

In 2000, petrol fuelled cars represented over 85 per cent of the total market. That level has fallen markedly in recent years and stood at 49 per cent in 2016. However, petrol fuelled cars have had a larger share of the new car market than diesel cars for the last two years

Source: SMMT New Car COReport 2017

Back to top

A24) Sales of petrol have been falling since reaching a peak of 33 bilion litres in 1990, equivalent to a 73 per cent market share of transport fuels. In 2016, sales of petrol fell to 16.4 billion litres, accounting for about 36 per cent of total road fuel sales.

Sales of diesel have, however, been steadily increasing for the last 30 years, with diesel sales in the UK setting a new record of 29.4 billion litres in 2016. Diesel now represents over 64 per cent of total road fuel sales.

Source: United Kingdom Petroleum Industry Association (UKPIA): 2017 Statistical Review 

The volume of petrol and diesel consumed in the UK year-by-year since 1990 can be viewed here.

Back to top

A25)  The UK's average new car fuel consumption in 2015 was 52.1 miles-per-gallon (mpg) (5.4 litres per 100 km) for petrol vehicles and 61.7 mpg for diesel vehicles (4.6 litres per 100 km).

Since 2005, there has been a 39 per cent increase in the average mpg figure for petrol vehicles and a 35 per cent increase in the average mpg figure for diesel vehicles.

The data can be viewed in the Department for Transport table ENV0103.  

Back to top

A26) Experts have questioned the validity of manufacturers' official fuel economy figures, with smaller cars seeing the biggest discrepancies.

The official figures put out by car makers are calculated under laboratory conditions and do not take account of real world driving. Tests on 500 vehicles - half petrol, half diesel - each driven for three hours on UK roads, found that vehicles typically travelled 18 per cent fewer miles per gallon than stated in manufacturers' specifications.

For further information, see here.

A report in December 2016 by Transport & Environment claims that the difference between official laboratory test results and real-world car performance has grown from 9 per cent in 2001 to 28 per cent in 2012 and 42 per cent in 2015. It is expected to reach 50 per cent before 2020.

Source: Transport and Environment: Mind the Gap Report 

Back to top

A27) Use the database here.

(Please note this database only includes information on new and used cars that were first registered on or after 1 March 2001).

Back to top 

A28) Figures analysed by the RAC Foundation show around 80 per cent of Britain's 26 million dwellings were built with a front plot. Almost a third of these plots have been turned into hardstanding. This means seven million front gardens now contain concrete and cars rather than flowers and grass, a total roughly equivalent to 100 Hyde Parks or 72 Oylmpic Parks.

Houses built between 1919 and 1964 are most likely to have a front garden and hence it is these properties that are most likely to have seen the change.

Source: Spaced Out: Perspectives on Parking Policy

Back to top

A29) Analysis by Direct Line Insurance shows a large increase in off-road parking applications by residents applying for kerbs to be lowered to allow vehicles to access their property. Across the UK, successful applications for the installation of dropped kerbs (vehicle crossovers) increased by 49 per cent between 2013 and 2015, with 29,587 applications approved in 2015. This came from a total of 42,281 applications for kerbs to be dropped throughout the year, meaning that overall applications increased by more than 13,000 between 2013 and 2015.  

Local authorities across the UK generate millions of pounds in revenue from dropped kerb applications. In 2015 alone, more than £2.9 million was generated in application fees, up 68 per cent from 2013.

Source: Direct Line Insurance

Back to top 

 

×