

Future Low Carbon Vehicles

Prof. Neville Jackson

Chief Technology & Innovation Officer

Ricardo plc

The Green Charge 27 March 2012

Delivering Value Through Innovation & Technology

www.ricardo.com

RD.12/140901.1

© Ricardo plc 2012

The growth of both regulation and targets for Low Carbon Vehicles sets a major challenge for the road transport sector

- EU, USA, Canada,China Australia & Japan all have legislation/ agreements for fuel economy or CO₂
- EU Proposal for Vans
 - 175 g/km from 2014-16
 - 147 g/km by 2020
- USA has set target of
 - 35.5 mpg by 2016
 - 54.5 mpg by 2025
 - Implemented over whole of USA by EPA

Challenging Targets:

- EU 3.9% pa to 2020
- US 4.7% pa to 2025

[1] China's target reflects gasoline fleet scenario. If including other fuel types, the target will be lower.[2] US and Canada light-duty vehicles include light-commercial vehicles.

 Both US and EU regulations allow credits for "eco-innovations" that result in real world fuel consumption/CO₂ reductions but without regulated drive cycle benefits

Progress has been made against EU emissions legislation, but **OEMs still have a lot to do in a comparatively short time**

Comments

- OEMs have an average annual CO₂ reduction of ~3% since 2005
 - Toyota and BMW lead with 6.5% and 4.7%
 - Ford and Renault are laggards with 1.4% and 18%
- Market still has average of ~6.6% to go to hit targets
 - PSA & Toyota have ~2%
 - Daimler has 15%
- 130 g/km compliance phased in for each OEM:
 - 65% of vehicles in 2012
 - 75% in 2013
 - 80% in 2014
 - 100% in 2015

Source: Bernstein & Ricardo analysis

Vehicle OEM's have implemented a wide range of measures to reduce CO₂ emissions - with scope for further improvements

OEM Approaches to CO₂ Reduction

Advanced combustion engines & electrification of the powertrain are key elements of the automotive future

SHORT TERM: ~2015

- Boosting & downsizing
 - Turbocharging
 - Supercharging
- Low speed torque enhancements
- Friction reduction
- Advanced thermal systems
- Stop/Start & low cost Micro Hybrid technology
- Niche Hybrid, PHEV's and Electric Vehicles

MEDIUM TERM: ~2025

- Extreme downsizing with 2 & 3 cylinder engines
- Combined turbo/ supercharging systems
- Advance 48 volt micro hybrid systems dominate
- PHEV's in premium & performance products
- EV's for city vehicles
- High Efficiency Lean Stratified Gasoline
- Advanced low carbon fuel formulations

LONG TERM: ~2050

- Plug-in/Hybrid electric systems dominate
 - Very high specific power IGE's
- Range of application specific low carbon fuels
- Exhaust & Coolant energy recovery
- Advanced thermodynamic Cycles
 - Split Cycle?
 - Heat Pumps?

Increasing Importance of Electrification

Battery packs are the key cost factor for xEVs, while costs will reduce they remain the biggest hurdle to mass adoption

Energy Battery Pack Cost Forecasts – based on 20kWh High Energy pack provides ~ 150 km urban range

Long haul/ heavy duty applications will require low carbon liquid fuels – light duty applications more suited to batteries

Technology Options

"Consensus" mass market roadmap developed by Ricardo for UK Auto Council shows a range of technologies will be required to meet regulatory targets

Source: Ultra Low Carbon Vehicles in the UK – BERR/DfT; Ricardo roadmaps and technology planning; Shell Energy Scenarios to 2050 (2008)

RD.12/140901.1

Potential disruptors - food for thought

A move to a Life-Cycle CO₂ measure may impact choice of future technology. Higher embedded emissions for hybrids and EVs

Future Technologies for Mid Size (1350-1500kg) Vehicle

Assumptions:

Vehicle specifications based on roadmap projections for 2015. Assumed lifetime mileage 150,000 km. Gasoline fuel E10. Diesel fuel B7 Fischer-Tropsch diesel from farmed wood (WTW = 6 gCO2eq/MJ via UK RED), Hydrogen carbon intensity 99.7 gCO₂e/MJ (from Natural Gas Steam Reforming), Electricity carbon intensity assumed to be 594 gCO_2/kWh .

Hybrid Bat. 1.8 kW.hr NiMH, 56 kW Motor, EV Bat. 32 kW.hr Li-ion ~ 150 km range, PHEV Bat. 5 kW.hr ~ 20 km range, FCEV Bat. 1.8 kW.hr Source: Ricardo report for LowCVP, "Preparing for a life cycle CO2 measure" (RD.11/124801.5), plus additional Ricardo analysis