
Mobility • Safety • Economy • Environment

Reproducible road
safety research with R
A practical introduction

Robin Lovelace
Institute for Transport Studies, University of Leeds
December 2020

The Royal Automobile Club Foundation for Motoring Ltd is a transport policy and research

organisation which explores the economic, mobility, safety and environmental issues

relating to roads and their users. The Foundation publishes independent and authoritative

research with which it promotes informed debate and advocates policy in the interest of the

responsible motorist.

RAC Foundation

89–91 Pall Mall

London

SW1Y 5HS

Tel no: 020 7747 3445

www.racfoundation.org

Registered Charity No. 1002705

December 2020 © Copyright Royal Automobile Club Foundation for Motoring Ltd

www.racfoundation.org

Mobility • Safety • Economy • Environment

Reproducible road safety
research with R
A practical introduction

Robin Lovelace
Institute for Transport Studies, University of Leeds
December 2020

i iiwww.racfoundation.orgReproducible road safety research with R: A practical introduction

About the Author
Robin Lovelace is Associate Professor of Transport Data Science at the Leeds Institute

for Transport Studies (ITS) specialising in the analysis of regional transport systems and

modelling scenarios of change. Robin is Lead Developer of the Propensity to Cycle

Tool (see www.pct.bike), Principal Investigator of the Department for Transport funded

SaferActive project and author of popular open source software packages (such as stplanr)

and books (such as Geocomputation with R).

Disclaimer
This report has been prepared for the RAC Foundation by Robin Lovelace at the Leeds

Institute for Transport Studies. Any errors or omissions are the author’s sole responsibility.

The report content reflects the views of the author and not necessarily those of the RAC

Foundation.

Thanks
Many thanks to everyone who made this happen, especially RAC Foundation for funding

the project, Malcolm Morgan and Andrea Gilardi for contributing to earlier versions, and

the Department for Transport for funding reproducible road safety research through the

SaferActive project. Many thanks to all contributors to the book so far via GitHub (this list

will update automatically): emilynagler, eugenividal, WillSERP, PublicHealthDataGeek, layik,

craigsmith1991, wengraf.

This version of the book book was built 2020-11-20 02:54:32 with the bookdown package

and R version 4.0.3 (2020-10-10).

https://www.robinlovelace.net
https://environment.leeds.ac.uk/transport
https://www.pct.bike
https://www.pct.bike
http://www.pct.bike
https://github.com/emilynagler
https://github.com/eugenividal
https://github.com/WillSERP
https://github.com/PublicHealthDataGeek
https://github.com/layik
https://github.com/craigsmith1991
https://github.com/wengraf
https://bookdown.org

i iiwww.racfoundation.orgReproducible road safety research with R: A practical introduction

Foreword ..v

Foreword ... vi

Preface ... vii

Introduction ... 1

1.1 Reproducibility ... 3

1.2 What is R? ... 4

1.3 Why R for road safety research? .. 5

1.4 Prerequisites .. 5

1.5 Installing R and RStudio ... 6

1.6 R in the cloud .. 6

1.7 Recommended packages .. 7

1.8 Overview ... 7

R basics .. 9

2.1 Creating and removing R objects ... 10

2.2 Object types: vectors and data frames .. 12

2.3 Subsetting by index or column name ... 13

2.4 Subsetting by values ... 15

2.5 Dealing with NAs and recoding .. 15

2.6 Changing class .. 16

2.7 Recoding values .. 16

2.8 Saving R objects ... 17

2.9 Now you are ready to use RStudio .. 18

Using RStudio ... 19

3.1 Projects and scripts ... 20

3.2 Writing and running code ... 21

3.3 Viewing Objects ... 22

1

2

3

Contents

iii ivwww.racfoundation.orgReproducible road safety research with R: A practical introduction

3.4 Autocompletion ... 23

3.5 Getting help ... 23

3.6 Commenting Code .. 24

3.7 The global environment ... 24

3.8 Debugging Code ... 25

3.9 Productivity boosting features .. 26

R packages ... 28

4.1 What are packages? .. 28

4.2 The stats19 R package .. 29

4.3 Installing packages .. 29

4.4 Loading packages ... 30

4.5 Using packages ... 32

4.6 Updating packages ... 32

4.7 ggplot2 .. 33

4.8 dplyr .. 37

Manipulating data .. 38

5.1 tibbles ... 38

5.2 filter() and select() rows and columns ... 39

5.3 Ordering and selecting the ‘top n’ .. 41

5.4 Summarise .. 41

5.5 Tidyverse exercises ... 42

Temporal data ... 43

6.1 Temporal analysis of crash data ... 43

6.2 Handling dates and date-times .. 50

6.3 Hours, minutes seconds with hms ... 50

6.4 The lubridate package ... 51

6.5 Dates in a data frame .. 53

6.6 Components of time objects .. 54

Spatial data ... 55

4

5

6

7

iii ivwww.racfoundation.orgReproducible road safety research with R: A practical introduction

List of Figures

7.1 sf objects ... 55

7.2 Reading and writing spatial data .. 57

7.3 sf polygons .. 57

7.4 Spatial subsetting and sf plotting ... 58

7.5 Geographic joins ... 60

7.6 Coordinate Reference Systems ... 62

7.7 Buffers ... 62

7.8 Attribute operations on sf objects .. 63

7.9 Mapping road crash data ... 63

7.10 Analysing point data .. 64

7.11 Analysing crash data on road networks ... 65

Joining road crash tables ... 70

8.1 STATS19 tables ... 70

8.2 Joining casualty data ... 72

8.3 Joining vehicle data ... 74

8.4 Case study: London .. 77

Next steps ... 82

9.1 Automated reporting with RMarkdown .. 83

9.2 Sharing code ... 83

9.3 Asking questions ... 84

9.4 Testimonials ... 85

rrsrr ... 88

References .. 89

8

9

10

Figure 1.1: Road danger levels worldwide in 2016. Data source: World Bank.

Reproducible source code: github.com/itsleeds/rrsrr ... 2

Figure 2.1: The R console pane in RStudio that appears when you first open RStudio. After typing

install.packages(stats), you should see the package name auto-complete. Pressing Enter at this

point will trigger the autocompletion of the command `install.packages(“stats19”) 9

v viwww.racfoundation.orgReproducible road safety research with R: A practical introduction

List of Tables
Table 1.1: Sample crash dataset. These are real records taken from the open STATS19

database, provided by the UK’s Department for Transport, under the terms of the Open

Government Licence (OGL). .. 1

Table 1.2: Four elements of reproducibility adapted from Peng, Dominici, and Zeger (2006). ... 3

Figure 3.1: The RStudio user interface showing the four main ‘panes’ 19

Figure 3.2: Debugging code with RStudio: notice the wavy red line highlighting a typo 25

Figure 4.1: A simple ggplot2 graph .. 33

Figure 4.2: Demonstration of fill and position arguments in ggplot2 35

Figure 4.3: A plot showing a facetted time series plot made with ggplot2 36

Figure 6.1: Three plots of the datetime (x axis) in relation to the date and time axis 45

Figure 6.2: Facetted time series showing how the number of crashes increases

during the working week .. 47

Figure 6.3: Facetted time series showing relative number of crashes per hour by

day in the working week .. 49

Figure 7.1: The crashes_sf dataset shown in map form with the function plot() 56

Figure 7.2: Illustration of the results of spatial subsetting. ... 59

Figure 7.3: Illustration of geographic joins. ... 61

Figure 7.4: Illustration of the plot and tmap approaches for creating maps 64

Figure 7.5: Maps of the Isle of Wight. ... 67

Figure 7.6: Roads in Essex downloaded with the code shown above 68

Figure 8.1: Barplot of recoded casualty type frequencies ... 74

Figure 8.2: ‘Who hit who’ visualisation of number of casualties (y axis) hurt in

crashes involving different vehicle types (largest vehicle in each crash on Y axis) 76

Figure 8.3: Spatial distribution of serious and fatal crashes in London, for cycling, walking,

being a car passenger and other modes of travel. Colour is related to the speed limit

where the crash happened (red is faster) and size is proportional to the total number

of people hurt in each crash. ... 81

v viwww.racfoundation.orgReproducible road safety research with R: A practical introduction

Foreword
Road Safety GB

Road Safety GB recognises the importance of high quality data analysis as a fundamental

element in efforts to reduce road casualties at a local and national level by enabling

evidence-based intervention. The use of open source software like R in this way is to be

actively encouraged and tools such as this manual provide valuable support for analysts

working across the industry in enhancing the analysis they are able to provide to decision-

makers. This approach also supports the reproduction of high-quality analysis up and down

the country using locally-held data, which I hope in turn will improve the consistency and

quality of evidence used in day-to-day road safety activity.

I would like to thank those that have worked hard to pull this manual together and

encourage all those working with road safety data to make use of this resource to learn,

develop and share their analysis methods with others.

Matt Staton, Director of Research, Road Safety GB

Department for Transport

The STATS19 data collection for road traffic collisions has existed in the current form since

1979. It is a well-established source of road safety data which offers great insights into the

trends and locations of road traffic collisions for central and local government, the police

and the general public. The openness and accessibility of this data is important to DfT, who

have launched a data download tool to improve the access to road safety data. As well

as working to enhance the use of R and Reproducible Analytical Pipelines to improve the

quality of their analysis and publications.

The standard use of packages and code creates transparent and consistent framework

for analysis. And the work by the University of Leeds takes new and experienced R users

through the process of producing temporal and special analysis using STATS19 data. We

commend this book to all those who wish to conduct analysis of road traffic collisions and

use analysis to help save lives on our roads.

John Wilkins, Deputy Director, Statistics Travel and Safety Division, Department for Transport

vii viiiwww.racfoundation.orgReproducible road safety research with R: A practical introduction

Foreword
If there is one thing to notice from the changes in the road safety sector over the past

decade it is the rapid development of data and data science. Not too long ago road safety

analysis involved mounds of paperwork, file sizes too large for transmission, and geo-coding

using old A to Zs. We now have systems with handheld devices taking precise GPS co-

ordinates at the scene, online-only systems and automated error checking. The volumes of

data we possess are growing rapidly, our abilities to maintain and clean data have become

more straightforward and what it is possible to discover from data has become cheaper and

easier to obtain. Our expectation is, understandably, that across the sector we should be

able to access road safety data and to do more with it, more easily and more readily.

The types of analyses that we used to associate with sectors like pharmaceuticals and insurance,

with high-end technology and well-funded research programmes, are increasingly within the grasp

of people with normal laptops and pay-by-the-hour cloud-computing, and in sectors that don’t

always have much money to throw at a problem. There good news is that there is scope for

road safety analysis to pick up these methods and approaches adopted in other sectors and

work hopefully to bring about the new insights we need to improve road safety.

At the RAC Foundation we want road transport to benefit from this new world of data

analysis – where the tools available are getting cheaper and what is possible is growing

rapidly. But this can only happen if the opportunities are given to the sector’s road safety

analysts to learn new skills for the job.

While Great Britain has a history of road crash data recording that is world-leading, our

analysis of it is all-too-often locked in to a pattern of labour-intensive and repetitious

reporting, with analysts lacking the support they need to improve skills and find the space to

do the sorts of analyses that will help us achieve the next step-change decline in casualties

on our roads. Which is why we commissioned this work from Robin Lovelace.

We hope that Robin’s manual will go some way towards meeting the current need: by giving

road safety analysts a self-help training manual to develop their skills in R, the open-source

analytical tool. This manual covers everything one would need for doing the regular tasks of

road safety analysis entirely in the R language, designed to be accessible to the newcomer.

R allows you to code analysis for reproducible research; reproducible in the sense that

others can check and verify it as well as borrow, share and adapt it to their own work.

Analysts can also repeat their own work as fresh data becomes available – there’s no

need to recreate the wheel. The openness, efficiency and power of working in R offers the

opportunity, if taken, to improve how road safety analysis gets done.

Let’s be honest: like learning any new skill, effort is needed upfront to reap the benefits

of this new way of working. But we firmly believe the effort it is worth it, and we think this

manual is great way to get you started.

Steve Gooding, Director, RAC Foundation

vii viiiwww.racfoundation.orgReproducible road safety research with R: A practical introduction

Preface
Many areas of research have real world implications, but few have the ability to save lives

in the way that road safety research does. Road safety research is a data driven field,

underpinned by attribute-rich spatio-temporal event-based datasets representing the grim

reality of people who are tragically hurt or killed on the roads. Because of the incessant nature

of road casualties, there is a danger that it becomes normalised, an implicitly accepted cost

associated with the benefits of personal mobility.

Data analysis in general and ‘data science’ in particular has great potential to support more

evidence-based road safety policies. Data science can be defined as a particular type of data

analysis process, in that it is script-based, reproducible and scalable. As such, it has the ability

to represent what we know about road casualties in new ways, demonstrate the life-saving

impacts of effective policies, and prioritise interventions that are most likely to work.

This manual was not designed to be a static textbook that is read once and accumulates

dust. It is meant to be a hand-book, taken out into the field of applied research and referred to

frequently in the course of an analysis project. As such, it is applied and exercise based.

There are strong links between data science, open data, open source software and more

collaborative ways of working. As such, this book is itself a collaborative and open source

project that is designed to be a living document. We encourage any comments, questions

or contributions related to its contents, the source code of which can be found at the

Reproducible Road Safety Research with R (rrsrr) repo on the ITSLeeds GitHub organisation,

via the issue tracker. More broadly, we hope you enjoy the contents of the book and find the

process of converting data science into data driven policy changes and investment rewarding.

Get ready for the brave new reproducible world and enjoy the ride!

Robin Lovelace, Leeds, Autumn 2020

https://github.com/ITSLeeds/rrsrr
https://github.com/ITSLeeds/
https://github.com/ITSLeeds/rrsrr/issues

1 2www.racfoundation.orgReproducible road safety research with R: A practical introduction

1. Introduction
This book teaches reproducible road safety analysis with R, a popular, free and open

source statistical programming language. It was initially developed for a 2 day course,

Introduction to R for Road Safety course. Since then, interest in the topic has grown. The

RAC Foundation charity in the UK funded the development of this manual as a free and

open resource to support their objective of making the roads safer for everyone. The content

is based on open access road crash data from the UK, which is provided by the R package

stats19 (Lovelace et al. 2019). However, the content is designed to be general and should

be of use to anyone working with road crash data worldwide, that has (at a minimum)

the following variables (see Table 1.1 for an example crash dataset):

• a timestamp;

• a location (or address that can be geocoded); and

• attribute data, such as severity of crash, and type of vehicles involved.

Table 1.1: Sample crash dataset. These are real records taken from the open

STATS19 database, provided by the UK’s Department for Transport, under the

terms of the Open Government Licence (OGL).

date longitude latitude accident_severity

2019-01-01 -0.124193 51.52679 Slight

2019-01-01 -0.191044 51.54639 Serious

2019-01-01 -0.200064 51.54112 Slight

Clearly, work is needed to go from the raw data to evidence that can save lives. Although

the datasets used in this guide are report road casualty data from Britain, the approach

knows no borders: R works equally well in China, India, the USA and Zambia. Road safety

is a global issue, that can be considered an epidemic and “the leading cause of death

for people aged between 5 and 29 years” worldwide, ahead of hunger, disease and war

(World Health Organization 2018). The urgency and ubiquity of the ‘road violence’ epidemic

is shown in Figure 1.1. Although Britain has relatively safe roads by international standards

(with around 3 road traffic deaths per 100,000 people per year, compared with a global

average of 17), it still sees over 1000 road deaths each year and unmeasurable costs to

families who have lost loved ones and people left with permanent injuries due to poorly

designed roads and transport policies..

https://www.racfoundation.org/introduction-to-r-for-road-safety://
https://www.racfoundation.org
https://www.who.int/publications/i/item/9789241565684

1 2www.racfoundation.orgReproducible road safety research with R: A practical introduction

Fi
g

ur
e

1.
1:

 R
o

ad
 d

an
g

er
 le

ve
ls

 w
o

rl
d

w
id

e
in

 2
01

6.
 D

at
a

so
ur

ce
: W

o
rl

d
 B

an
k.

 R
ep

ro
d

uc
ib

le
 s

o
ur

ce
 c

o
d

e:
 g

ith
ub

.c
o

m
/i

ts
le

ed
s/

rr
sr

r

An
go

la

Ar
ge

nt
in

a

Au
st

ra
lia

Bo
liv

ia

Br
az

il

C
an

ad
a

C
hi

na

D
em

. R
ep

. C
on

go

C
ol

om
bi

a

Al
ge

ria

Et
hi

op
ia

G
re

en
la

nd

In
do

ne
si

a

In
di

a

Ira
n

Ka
za

kh
st

an

Li
by

a
M

ex
ic

o

M
al

i

M
on

go
lia

N
ig

er

Pe
ru

R
us

si
a

Sa
ud

i A
ra

bi
a

Su
da

n
C

ha
d

U
ni

te
d

St
at

es

So
ut

h
Af

ric
a

R
oa

d
de

at
hs

pe
r 1

00
,0

00
0

to
 1

0
10

 to
 2

0
20

 to
 3

0
30

 to
 4

0
M

is
si

ng

github.com/itsleeds/rrsrr

3 4www.racfoundation.orgReproducible road safety research with R: A practical introduction

The guide is practical, meaning that you should reproduce the examples that are provided

throughout. As with many practical skills, you learn data science by doing data science.

Before getting stuck in with the practical content, which begins in Section 2, the remainder

of this chapter:

• introduces the concept reproducibility and its importance for evidence-based

policies;

• explains the choice of R as a ‘tool of the trade’ for road safety research;

• outlines how to install R on your computer or access it through remote servers in

the ‘cloud’; and

• explains the structure of the manual, outlines the contents of each section and how

they should be used for maximum benefit depending on your level of experience

and aims (Section 1.8).

Reproducibility

Reproducible research can be defined as work that generates results that can be

regenerated by others using publicly accessible code (Lovelace, Nowosad, and Muenchow

2019). By contrast, findings that cannot be repeated are not reproducible.

Reproducibility is not a binary concept, but a continuum. At one extreme, there is work that

does not report the data source, methods or software. At the other end of that continuum,

there are findings that can be reproduced in their entirety, including the production of figures

and, as is the case with this manual, the manuscript/medium in which results are presented.

Reproducibility can be built into every stage of quantitative research, as shown in Table 1.2.1

Table 1.2: Four elements of reproducibility adapted from Peng, Dominici, and

Zeger (2006).

Research component Requirement

Data Datasets used are available.

Methods Computer code underlying figures, tables, etc are available.

Software to execute that code is available.

Documentation Documentation of the computer code, software

environment, and methods for others to repeat and build on

the analysis.

Distribution Standard methods of distribution are used for others to

access the software, data, and documentation.

1.1

3 4www.racfoundation.orgReproducible road safety research with R: A practical introduction

The importance of reproducibility in scientific research should be obvious: if findings cannot

be repeated, this casts doubt on the validity and truth of the conclusions drawn from them.

Reproducibility is vital for falsifiability, a cornerstone of science (Popper 1934).

In applied policy-relevant research areas, such as road safety research, reproducibility

is equally important: policy makers and the public want to have confidence that the

evidence underlying key decisions is reliable. Policies based on results that nobody can

reproduce are harder to defend than policies that have a clear evidence base open for

others to repeat, including members of the public and educators. In transport planning,

open and reproducible methods support more transparent and democratically accountable

interventions (Lovelace, Parkin, and Cohen 2020). Reproducibility leads to solid science,

which is conducive to effective policies. In the context of road safety research, this means

that reproducibility can save lives.

What is R?

R is an open source programming language first developed by award-winning academic

statisticians Dr Ross Ihaka and Professor Robert Gentleman. Since its first release in 1995

and the release of version 1.0.0 in 2000, R has seen rapid uptake (Gentleman and Temple

Lang 2007; Ihaka, Gentleman, and Robert 1996). As of September 2020, R was ranked as

the 9th most used programming language on the TIOBE Index, ahead of other languages

for data processing, such as SQL and MATLAB, and behind general purpose languages

such as C, Java and Python.

An important feature of R is that it was designed for data processing and statistical analysis.

This means that you can undertake many aspects of road safety research using the core

language.2 R is widely acknowledged to outperform other open languages for data science,

such as Julia, Python and Scala, in terms of data visualisation and deployment of web

applications for presenting data via the R package shiny (Wickham 2020).3 Furthermore,

recently developed packages tidyverse and sf, provide a unified and user friendly

system for working with attribute-rich and geographic datasets (Grolemund and Wickham

2016; Lovelace, Nowosad, and Muenchow 2019). Because road crash data is commonly

attribute-rich and geographic, we will be using these packages in subsequent sections.

1.2

https://en.wikipedia.org/wiki/Ross_Ihaka
https://en.wikipedia.org/wiki/Robert_Gentleman_(statistician)
https://www.tiobe.com/tiobe-index/

5 6www.racfoundation.orgReproducible road safety research with R: A practical introduction

Why R for road safety research?

R is an outstanding language for reproducible research (Lovelace, Nowosad, and

Muenchow 2019; Peng, Dominici, and Zeger 2006). It is accessible with no licensing

restrictions and easy installation procedures on a wide range of computers, including most

versions of Windows, Mac and Linux operating systems (R Core Team 2020b). Furthermore,

R is highly extensible. With 15,000+ packages available, many of which are developed

by professional statisticians and domain experts, R provides access to a wide array of

statistical, computational and visualisation techniques. Many packages, such as markdown

and reprex, were designed to support more reproducible research (Xie, Allaire, and

Grolemund 2018; Bryan et al. 2019).

From a road safety perspective, R is well suited to handling data structures used in road

safety research. R excels at the processing, analysis, modelling and visualisation of large

spatio-temporal and attribute-rich datasets of the type key to road safety research. R is a

mature and growing tool for data science, popular in industry, academia and government,

so it creates multiple opportunities for collaboration within and between organisations and

internationally.

Prerequisites

You do not need to be a professional programmer, data scientist or computer wizard to

use R for road safety research. If you have primarily used graphical user interfaces (GUIs),

such as Microsoft Excel, it may take some time to get used to the code-based R approach.

However, the command-line interface (CLI) of R is no ‘harder’ than the incessant pointing

and clicking demanded by tools such as Excel and web-based GUIs for road safety

research. It takes time to adapt to new ways of working, and R has a steep learning curve

at the outset. However, persevering can be very rewarding: proficiency with R’s CLI is a

future-proof and transferable skill that can yield huge productivity gains. Perhaps the most

important prerequisite, therefore, is time and a willingness to try new ways of working.

The good news is that it has never been easier to install and learn R, as highlighted in the

stats19-training-setup that can be found on the stats19 package website at docs.

ropensci.org/stats19.

It is important to have an up-to-date version of R installed before proceeding to the practical

sections of this manual. Note that, like any actively developed software, R is evolving so it

is worth updating or re-installing R/RStudio every year or so and updating your R packages

every month or so to ensure you have the latest software.

1.3

1.4

https://docs.ropensci.org/stats19/
https://docs.ropensci.org/stats19/

5 6www.racfoundation.orgReproducible road safety research with R: A practical introduction

Installing R and RStudio

To complete the exercises in this guide, you will need to install:

• R from cran.r-project.org

• RStudio from rstudio.com

• R packages, by opening RStudio and typing install.packages("stats19") in

the console to install the stats19 package, for example (see Section 1.7 for details)

We recommend using at least the latest stable release of R (4.0.0 at the time of writing

in 2020). We recommend running R on a decent computer, with at least 4 GB RAM and

ideally 8 GB or more RAM. R is computationally efficient and therefore fast language for data

science but, because of the size of some road safety datasets, we recommend using it on a

high spec laptop or desktop.

R in the cloud

If you do not have access to a suitable computer on which you can install R, or just want to

get up-and-running quickly, you can run R in the cloud.4

Various organisations manage RStudio Server instances, but by far the most well-known

cloud provider is at cloud.rstudio.com. To run R in the cloud, sign-up to cloud.rstudio.com

(or cloud instance of your choice) and access RStudio from the browser.

1.5

1.6

https://cran.r-project.org
https://rstudio.com/products/rstudio/download/#download
https://rstudio.com/products/cloud/

7 8www.racfoundation.orgReproducible road safety research with R: A practical introduction

Recommended packages

Of the thousands of available packages that are available for road safety research, we

will use a handful that are mature, well-tested and well-suited to statistical analysis and

visualisation of road casualty data. For the first practical steps, in Section 2, all you need is

a working version of R and RStudio. In Section 4 we will see how to install and use add-on

packages such as stats19. If you want to be ahead of the game, you can check that you

have the necessary packages installed by running the following commands, which install

and load the packages that we will use for the course:

install.packages("remotes") # installs the remotes package
pkgs = c(
 "stats19", # downloads and formats open stats19 crash data
 "sf", # spatial data package
 "tidyverse", # a ‘metapackage’ with many functions for data processing
 "tmap", # for making maps
 "pct", # access travel data from DfT-funded PCT project
 "stplanr" # transport planning tools
)

remotes::install_cran(pkgs)
lapply(pkgs, library, character.only = TRUE)

Overview

The rest of the manual is structured as follows.

• Section 2 introduces the basics of the R language. While not essential reading

for people who already have experience with R or who just want to get stuck-in

to importing datasets, as per Section 5, it is recommended reading even if you

already use R. This section introduces key aspects of the R language that may not

be needed for basic data analysis tasks, but which will be vital when ‘debugging’

your code (the process you go through to remove bugs/mistakes). It provides a

strong foundation for subsequent sections.

• Section 3 provides a brief introduction to productive research workflows using

RStudio, an advanced integrated development environment for not only writing R

code, but also for project management and boosting your productivity with a suite

of features that puts Excel to shame.

• Section 4 introduces the stats19 package and other R packages we will be using

in subsequent chapters.

• Section 5 demonstrates key data processing techniques using tidyverse.

• Section 6 teaches key functions for working with timestamps.

1.7

1.8

7 8www.racfoundation.orgReproducible road safety research with R: A practical introduction

• Section 7 shows how you can create maps and perform geographic data analysis

with road crash data in R.

• Section 8 provides an introduction to joining road crash data, with a focus on

casualty and accident tables in STATS19 data (introduced in Section 4).

• Section 9 suggests next steps for road safety researchers looking to take their

skills to the next levels and provide the strong evidence needed to save lives.

9 10www.racfoundation.orgReproducible road safety research with R: A practical introduction

2. R basics
Learning a programming language is like learning any language. If you’re learning French, for

example, you could just dive in and start gesticulating to people in central Paris. However,

it’s worth taking the time to understand the structure and key words of the language first.

The same applies to data science: it will help if you first understand a little about the syntax

and grammar of the language that we will use to in relation to the ‘data’ (the statistical

programming language R) before diving into using it for road safety research. This section,

parts of which were originally developed for a 2 day course on data science, may seem

tedious for people who just want to crack on and load-in data.5 However, working through

the examples below is recommended for most people unless you’re already an experienced

R user, although even experienced R users may learn something about the language’s

syntax and fundamental features.

The first step is to start RStudio, e.g. if you are on Windows, this can be achieved by

tapping Start and searching for RStudio. You should see an R console pane like that which

is displayed in Figure 2.1.

Figure 2.1: The R console pane in RStudio that appears when you first open

RStudio. After typing install.packages(stats), you should see the package name

auto-complete. Pressing Enter at this point will trigger the autocompletion of the

command `install.packages(“stats19”)

If you saw something like that which is shown in Figure 2.1 congratulations! You are ready to

start running R code by entering commands into the console.

9 10www.racfoundation.orgReproducible road safety research with R: A practical introduction

Creating and removing R objects

R can be understood as a giant calculator. If you feed the console arithmetic tasks, it will

solve them precisely and instantly. Try typing the following examples (note that pi is an

inbuilt object) into the R console in RStudio and pressing Enter to make R run the code.

(Note: The output of the code, when shown in this manual, is preceeded by ‘##.’)

2 + 19

[1] 21

pi^(19 + 2) / exp(2 + 19)

[1] 20.89119

Use the same approach to find the square route of 361 (answer not shown):

sqrt(361)

This is all well and good, providing a chance to see how R works with numbers and to

get some practice with typing commands into the console. However, the code chunks

above do not make use of a key benefit of R: it is object oriented, meaning it stores values

and complex objects, such as data frames representing road casualties, and processes

them in memory (meaning that R is both fast and memory hungry when working with large

datasets). If you are more familiar with Excel, a data frame may be thought of as fulfilling the

purpose of a single worksheet containing a set of data.

The two most common ways of creating objects are using <- ‘arrow’ or = ‘equals’

assignment. These symbols are assignment operators because they assign contents, such

as numbers, to named objects.6 Let’s reproduce the calculations above using objects. This

makes the final command more concise:

x = 2
y = 19
z = x + y
pi^z / exp(z)

[1] 20.89119

The previous code chunk created and stored three objects called x, y and z and showed

how these objects can themselves be used to create additional objects. Why x, y and z?

Lack of imagination!

2.1

11 12www.racfoundation.orgReproducible road safety research with R: A practical introduction

You can call R objects anything you like, provided they do not start with numbers or

contain reserved symbols such as + and -. You can use various stylistic conventions when

naming your R objects, including camelCase and dot.case (Baath 2012). We advocate

using snake_case, a style that avoids upper case characters to ease typing and uses the

underscore symbol (_) to clearly demarcate spaces between words.

The objects created in the previous code chunk have now served their purpose, which is to

demonstrate basic object creation in R. So, based on the wise saying that tidying up is the

most important part of a job, we will now remove these objects:

rm(x, y, z)

What just happened? We removed the objects using the R function rm(), which stands

for ‘remove.’ A function is an instruction or set of instructions for R to do something with

what we give to that function. What we give to the function are known as arguments. Each

function has set of arguments we can potentially give to it.

Technically speaking, we passed the objects to arguments in the rm() function call. In

plain English, things that go inside the curved brackets that follow a function name are the

arguments. The rm() function removes the objects that it is passed (most functions modify

objects). A ‘nuclear option’ for cleaning your workspace is to run the following command,

the meaning of which you will learn in the next section. (Can you guess?)

rm(list = ls())

Next exercise: create objects that more closely approximate road casualty data by typing

and running the following lines of code in the console:

casualty_type = c("pedestrian", "cyclist", "cat")
casualty_age = seq(from = 20, to = 60, by = 20)

11 12www.racfoundation.orgReproducible road safety research with R: A practical introduction

Object types: vectors and data frames

The final stage in the previous section involved creating two objects with sensible names

in our R session.7 After running the previous code chunk the casualty_* objects are in

the workspace (technically, the ‘global environment’). You should be able to see the object

names in the Environment tab in the top right of RStudio. Objects can also be listed with the

ls() command as follows:

ls()

[1] "casualty_age" "casualty_type"

The previous command executed the function ls() with no arguments. This helps explain

the command rm(list = ls()), which removed all objects in the global environment in

the previous section. This also makes the wider point that functions can accept arguments

(in this case the list argument of the rm() function) that are themselves function calls.

Two key functions for getting the measure of R objects are class() and length().

class(casualty_type)

[1] "character"

class(casualty_age)

[1] "numeric"

The class of the casualty_type and casualty_type objects are character (meaning

text) and numeric (meaning numbers), respectively. The objects are vectors, a sequence

of values of the same type. Next challenge: guess their length and check your guess was

correct by running the following commands (results not shown):

length(casualty_type)
length(casualty_age)

To convert a series of vectors into a data frame with rows and columns (similar to an Excel

worksheet), we will use the data.frame() function. Create a data frame containing the two

casualty vectors as follows:

crashes = data.frame(casualty_type, casualty_age)

2.2

13 14www.racfoundation.orgReproducible road safety research with R: A practical introduction

We can see the contents of the new crashes object by entering the following line of code.

This prints its contents (results not shown, you need to run the command on your own

computer to see the result):

crashes

We can get a handle of data frame objects such as crashes as follows:

class(crashes)

[1] "data.frame"

nrow(crashes)

[1] 3

ncol(crashes)

[1] 2

The results of the previous commands tell us that the dataset has 3 rows and 2 columns.

We will use larger datasets (with thousands of rows and tens of columns) in later sections,

but for now it’s good to ‘start small’ to understand the basics of R.

Subsetting by index or column name

As we saw above, the most basic type of R object is a vector, which is a sequence of values

of the same type such as the numbers in the object casualty_age. In the earlier examples,

x, y and z were all numeric vectors with a length of 1; casualty_type is a character vector

(because it contains letters that cannot be added) of length 3; and casualty_age is a

numeric vector of length 3.

Subsetting means ‘extracting’ only part of a vector or other object, so that only the parts of most

interest are returned to us. Subsets of vectors can be returned by providing numbers representing

the positions (index) of the elements within the vector (e.g. ‘2’ representing selection of the 2nd

element) or with logical (TRUE or FALSE) values associated with the element. These methods

are demonstrated below, to return the 2nd element of the casualty_age object is returned:

casualty_age

[1] 20 40 60

casualty_age[2]

[1] 40

casualty_age[c(FALSE, TRUE, FALSE)]

[1] 40

2.3

13 14www.racfoundation.orgReproducible road safety research with R: A practical introduction

Two dimensional objects such as matrices and data frames can be subset by rows and

columns. Subsetting in base R is achieved by using square brackets [] after the name of

an object. To practice subsetting, run the following commands to index and column

name and verify that you get the same results to those that are shown below.

casualty_age[2:3] # second and third casualty_age
crashes[c(1, 2),] # first and second row of crashes
crashes[c(1, 2), 1] # first and second row of crashes, first column
crashes$casualty_type # returns just one column

The final command used the dollar symbol ($) to subset a column. We can use the same

symbol to create a new column as follows:

vehicle_type = c("car", "bus", "tank")
crashes$vehicle_type = vehicle_type
ncol(crashes)

[1] 3

Notice that the dataset now has three columns after we added one to the right of the

previous one. Note also that this would involve copying and pasting cells in Excel, but in R it

is instant and happens as fast as you can type the command. To confirm that what we think

has happened has indeed happened, print out the object again to see its contents:

crashes

casualty_type casualty_age vehicle_type
1 pedestrian 20 car
2 cyclist 40 bus
3 cat 60 tank

In Section 5 we will use filter() and select() functions to subset rows and columns.

Before we get there, it is worth practicing subsetting using the square brackets to

consolidate your understanding of how base R works with vector objects such as vehicle_
type and data frames such as crashes. If you can answer the following questions,

congratulations, you are ready to move on. If not, it’s worth doing some extra reading and

practice on the topic of subsetting in base R.

Exercises

1. Use the $ operator to print the vehicle_type column of crashes.

2. Subset the crashes with the [,] syntax so that only the first and third columns of

crashes are returned.

3. Return the 2nd row and the 3rd column of the crashes dataset.

4. Return the 2nd row and the columns 2:3 of the crashes dataset.

5. Bonus: what is the class() of the objects created by each of the previous exercises?

15 16www.racfoundation.orgReproducible road safety research with R: A practical introduction

Subsetting by values

It is also possible to subset objects by the values of their elements. This works because the

[operator accepts logical vectors returned by queries such as ‘Is it less than 3?’ (x < 3 in

R) and ‘Was it light?’ (crashes$dark == FALSE), as demonstrated below:

x[c(TRUE, FALSE, TRUE, FALSE, TRUE)] # 1st, 3rd, and 5th element in x
x[x == 5] # only when x == 5 (notice the use of double equals)
x[x < 3] # less than 3
x[x < 3] = 0 # assign specific elements
casualty_age[casualty_age %% 6 == 0] # just the ages that are a multiple
of 6
crashes[crashes$dark == FALSE,] # just crashes that occured when it
wasnt dark

Exercises

1. Subset the casualty_age object using the inequality (<) so that only elements less

than 50 are returned.

2. Subset the crashes data frame so that only tanks are returned using the == operator.

3. Bonus: assign the age of all tanks to 61.

Dealing with NAs and recoding

R objects can have a value of NA. NA is how R represents missing data.

z = c(4, 5, NA, 7)

NA values are common in real-world data but can cause trouble. For example:

sum(z) # result is NA

Some functions can be told to ignore NA values.

sum(z, na.rm = TRUE) # result is equal to 4 + 5 + 7

You can find NAs using the is.na() function, and then remove them:

is.na(z)
z_no_na = z[!is.na(z)] # note the use of the not operator !
sum(z_no_na)

If you remove records with NAs, be warned: the average of a value excluding NAs may not

be representative.

2.4

2.5

15 16www.racfoundation.orgReproducible road safety research with R: A practical introduction

Changing class

Sometimes you may want to change the class of an object. This is called class coercion,

and can be done with functions such as as.logical(), as.numeric() and as.matrix().

Exercises

1. Coerce the vehicle_type column of crashes to the class character.

2. Coerce the crashes object into a matrix. What happened to the values?

3. Bonus: What is the difference between the output of summary() on character

and factor variables?

Recoding values

Often it is useful to ‘recode’ values. In the raw STATS19 files, for example, -1 means NA.

There are many ways to recode values in R, the simplest and most mature of which is the

use of ‘factors,’ which are whole numbers representing characters. Factors are commonly

used to manage categorical variables such as sex, ethnicity or, in road traffic research,

vehicle type or casualty injury severity.

z = c(1, 2, -1, 1, 3)
l = c(NA, "a", "b", "c") # labels in ascending order
z_factor = factor(z, labels = l) # factor z using labels l
z_character = as.character(z_factor) # convert factors to characters
z_character

[1] "a" "b" NA "a" "c"

Exercises

1. Recode z to Slight, Serious and Fatal for 1:3 respectively.

2. Bonus: read the help file at ?dplyr::case_when and try to recode the values

using this function.

2.6

2.7

17 18www.racfoundation.orgReproducible road safety research with R: A practical introduction

Saving R objects

You can also save individual R objects as .Rds files. The .Rds format is the data format

for R, meaning that any R object can be saved as an Rds file, equivalent to saving an Excel

spreadsheet as a .xlsx file. The following command saves the crashes dataset into a

compressed file called crashes.Rds:

saveRDS(crashes, "crashes.Rds")

Try reading in the data just saved, and checking that the new object is the same as

crashes, as follows:

crashes2 = readRDS("crashes.Rds")
identical(crashes, crashes2)

[1] TRUE

R also supports many other formats, including CSV files, which can be created and

imported with the functions readr::read_csv() and readr::write_csv() (see also the

readr package).

readr::write_csv(crashes, "crashes.csv") # uses the write_csv function
from the readr package
crashes3 = readr::read_csv("crashes.csv")
identical(crashes3, crashes)

Notice that crashes3 and crashes are not identical. What has changed? Hint: read the

help page associated with ?readr::write_csv.

2.8

17 18www.racfoundation.orgReproducible road safety research with R: A practical introduction

Now you are ready to use RStudio

Bonus: reproduce the following plot by typing the following code into the console.

eyes = c(2.3, 4, 3.7, 4)
eyes = matrix(eyes, ncol = 2, byrow = T)
mouth = c(2, 2, 2.5, 1.3, 3, 1, 3.5, 1.3, 4, 2)
mouth = matrix(mouth, ncol = 2, byrow = T)
plot(eyes, type = "p", main = "RRR!", cex = 2, xlim = c(1, 5), ylim =
c(0, 5))
lines(mouth, type = "l", col = "red")

1 2 3 4 5

0
1

2
3

4
5

RRR!

eyes[,1]

ey
es

[,2
]

2.9

19 20www.racfoundation.orgReproducible road safety research with R: A practical introduction

3. Using RStudio
The previous section taught the basics of the R language. We entered and ran commands

directly in the console. In this section we will learn how to write R scripts in RStudio’s source

editor. We will also take a step back and considers how R code fits into the wider context

of scripts, projects, and getting help in RStudio. RStudio is an integrated development

environment (IDE) for R that makes it easy to create and run scripts, explore R objects and

functions, plot results and get help.

The first exercise is to open RStudio, take a look around, identify and explore the main

components, shown in Figure 3.1. Click on different buttons in RStudio’s GUI and try

changing the Global Settings (in the Tools menu) and see RStudio’s shortcuts by pressing

Alt-Shift-K (or Option+Shift+K on Mac).

Figure 3.1: The RStudio user interface showing the four main ‘panes’

19 20www.racfoundation.orgReproducible road safety research with R: A practical introduction

Projects and scripts

Projects organise files and settings in RStudio into folders. Each project has its own folder

and Rproj file. When using RStudio, always ensure you are working in a named

project to organise your work. Start a new project with by clicking on File > New
Project in RStudio’s top menu.8 You create projects either in a new or existing directory

(folder). Make a new project called ‘lrrsrr’ (short for ‘learning reproducible road

safety research with R’) or a name of your choice and save it in a sensible place on

your computer. The name of the project will appear in the top right of RStudio.

‘Scripts’ are files where R code are stored, and these can be edited in the Source Editor

panel (the top left panel in Figure 3.1). Keeping your code in sensibly named, well

organised and reproducible scripts will make your life easier. We could continue

typing all our code into the console, as we did in Section 2. However, that approach is

limited when working on anything more complicated than a few simple commands. Code

that you want to keep and share should be saved script files, i.e. plain text files that have the

.R extension.

Make a new script by typing and running this command in the R console:9

file.edit("section3.R")

This will open the Source Editor and place your cursor there. Try jumping between the

Source Editor and the Console by pressing Ctl+1 and Ctl+2.

Keeping scripts and other files associated with a project in a single folder per project (in an

RStudio project) will help you to locate things you need and develop an efficient workflow.

Next, to check that your project is saved, close RStudio.

3.1

21 22www.racfoundation.orgReproducible road safety research with R: A practical introduction

Writing and running code

Re-open RStudio and ensure that you have an empty file open in the Source Editor. We

will type some basic commands into this file. Type the following lines of code into your

new section3.R R script and execute the result line-by-line by pressing Ctrl+Enter

(Command+Enter on Mac):

x = 1:5
y = c(0, 1, 3, 9, 18)
plot(x, y)

When the code has been sent to the console, two objects are created, both of which are

vectors of 5 elements (Bonus: check their length using the length() function). The third

line of the code chunk plots them. Save the script by pressing Ctrl+S.

There are several ways to run code within a script and it is worth becoming familiar with

each. Try running the code you saved in the previous section using each of these methods:

1. Place the cursor in different places on each line of code and press Ctrl+Enter to

run that line of code.

2. Highlight a block of code or part of a line of code and press Ctrl+Enter to run the

highlighted code.

3. Press Ctrl+Shift+Enter to run all the code in a script.

4. Select Run on the toolbar to run all the code in a script.

5. Bonus: Use the function source() to run all the code in a script

e.g. source("section3.R")

Practice alternating between the console and the source editor by pressing Ctl+1 and Ctl+2.

3.2

21 22www.racfoundation.orgReproducible road safety research with R: A practical introduction

Viewing Objects

To practice typing code into scripts, rather than into the console, we will re-create the

objects we created in Section 2. Create a new script called objects.R and type the

following commands, character-for-character, including spaces in the right places. Typing

rather than copy-pasting will help develop good coding style and speed:10

vehicle_type = c("car", "bus", "tank")
casualty_type = c("pedestrian", "cyclist", "cat")
casualty_age = seq(from = 20, to = 60, by = 20)
set.seed(1)
dark = sample(x = c(TRUE, FALSE), size = 3, replace = TRUE)
small_matrix = matrix(1:24, nrow = 12)
crashes = data.frame(vehicle_type, casualty_type, casualty_age, dark)

Run the code line-by-line by pressing Ctl+Enter multiple times, as described in the

previous section. Try viewing the objects in the following ways:

1. Type the name of the object into the console, e.g. crashes and small_matrix,

and run that code. Scroll up to see the numbers that didn’t fit on the screen.

2. Use the head() function to view just the first 6 rows e.g. head(small_matrix)
3. Bonus: use the n argument in the previous function call to show only the first 2

rows of small_matrix
4. Click on the crashes object in the environment tab to View it in a spreadsheet.

5. Run the command View(vehicle_type). What just happened?

We can also get an overview of an object using a range of functions, including:

• summary()
• class()
• typeof()
• dim()
• length()

View a summary of the casualty_age variable by running the following line of code (you

should see the same output as shown below):

summary(casualty_age)

Min. 1st Qu. Median Mean 3rd Qu. Max.
20 30 40 40 50 60

Exercise: use the functions listed above (class() to length()) to test the basic R

functions and extract key information about the object vehicle_type. What does the

output tell us about the object?

3.3

23 24www.racfoundation.orgReproducible road safety research with R: A practical introduction

Autocompletion

RStudio can help you write code by autocompleting it. RStudio will look for similar objects

and functions after typing the first three letters of a name.

When there is more than one option, you can select from the list using the mouse or arrow

keys. Within a function, you can get a list of arguments by pressing Tab.

Test RStudio’s amazing autocompletion capabilities by typing the beginning of object names

and functions and pressing Tab to see what suggestions pop-up. Try pressing Up and Down

after pressing Tab to select different options.

Bonus: try autocompleting file names by typing "" (the closing quote mark should be

added automatically) and pressing Tab when your cursor is between the quote marks. What

happens when you type "~/" and press Tab with your cursor just after the tilde (~) symbol.

What does this mean? (Hint: it involves the word ‘home’ and you can search the web to find

a full answer)

Getting help

Every function in R has a help page. You can view the help using ?. For example, ?sum

and ?plot. Many packages also contain ‘vignettes,’ which are long form help documents

containing examples and guides. vignette() will show a list of all the vignettes available, or

you can also view a specific vignette. For example, vignette(topic = "sf1", package
= "sf").

Try getting help on the stats19 package by typing the following and pressing Tab when

your cursor is just to the left of the closing bracket). Autocompletion works for more

than just R objects and files–try making RStudio autocomplete and run the command

vignette("stats19-vehicles"). For example:

vignette(stats19)

You can further search and explore R’s help files using the Help panel in the bottom right

window in RStudio.

3.4

3.5

23 24www.racfoundation.orgReproducible road safety research with R: A practical introduction

Commenting Code

It is good practice to use comments in your code to explain what it does. You can comment

code using #

For example:

Create vector objects (a whole line comment)
x = 1:5 # a seqence of consecutive integers (inline comment)
y = c(0, 1, 3, 9, 18.1)

You can comment/uncomment a whole block of text by selecting it and using

Ctrl+Shift+C.

Pro tip: You can add a comment section using Ctrl+Shift+R.

The global environment

The ‘Environment’ tab shows all the objects in your environment. This includes datasets,

parameters, and any functions you have created. By default, new objects appear in the

Global Environment, but you can see other environments with the dropdown menu. For

example, each package has its own environment.

Sometimes you wish to remove things from your environment, perhaps because you no

longer need them or because things are getting cluttered.

You can remove an object with the rm() function e.g. rm(x) or rm(x, y). Alternatively, you

can clear your whole environment with the ‘broom’ button on the ‘Environment’ Tab.

1. Remove the object x that was created in a previous section.

2. What happens when you try to print the x by entering it into the console?

3. Try running the following commands in order: save.image(); rm(list =
ls()); load(".RData"). What happened?

4. How big (how many bytes) is the .RData file in your project’s folder?

5. Tidy up by removing the .Rdata file with file.remove(".Rdata").

3.6

3.7

25 26www.racfoundation.orgReproducible road safety research with R: A practical introduction

Debugging Code

All the code shown so far is reproducible and, unless you introduced typos, is ‘bug free,’

meaning that it runs without errors. Typos are common though and even experienced R

users frequently see error messages as they undertake interactive data analysis. For that

reason, learning to fix typos in R code is an important skill. RStudio comes to the rescue

here with helpful debugging features. To test them, write some code that fails, as shown in

the code chunk and exercises below 3.2, then answer the questions below by interacting

with RStudio:

x = 1:5
y = c(0, 1, 3, 9 18.1) # R code with a typo

Error: <text>:2:18: unexpected numeric constant
1: x = 1:5
2: y = c(0, 1, 3, 9 18.1
^

Figure 3.2: Debugging code with RStudio: notice the wavy red line highlighting a typo

1. Try running the faulty code. How can the error message help debug the code?

2. What is the problem with the code shown in the figure?

3. Create other types of error in the code you have run (e.g. no symetrical brackets

and other typos).

4. Does RStudio pick up on the errors? And what happens when you try to run buggy

code?

Always address debugging prompts to ensure your code is reproducible

3.8

25 26www.racfoundation.orgReproducible road safety research with R: A practical introduction

Productivity boosting features

Finally, we look at functionality in RStudio that goes beyond the features described above.

RStudio is an advanced and powerful IDE and is highly customisable in myriad ways,

especially since the launch of the RStudio Addins add-on system in 2016. Rather than

try to be comprehensive (an impossible task), this section provides a list of additional

RStudio features, starting simple, that have been tried and tested, with links to the relevant

documentation rather than extended descriptions.

• Zoom levels and appearance settings: it is important for code and other text to

be the right size. Too small and it’s hard to see, too big and you end up frequently

scrolling up and down. The appropriate text size varies: if you’re doing a screen

share, big text is appropriate; if you’re writing copious amounts of text (as I was

when writing this prose in RStudio), smaller text will be handy. On Windows and

Linux you can zoom with the shortcuts Ctl+Shift++ and Ctl+- for zooming in

and out respectively. See ‘Tools > Global Options’ menu (which can be launched

with the shortcut Alt+T and then G) for more advanced ‘Appearance’ settings.

• Global search (and replace): in addition to search and replace functionality for single

files (accessed in the standard way, by pressing Ctl+F), RStudio has a powerful

global search feature inbuilt. Launch this feature by pressing Ctl+Shift+F and you

can search any file types (e.g. only files ending in .R) for any string within an entire

project. This feature is very handy when working with large, multi-file projects.

• Shortcuts: there are many, many shortcuts built into RStudio. In fact, there is even

a shortcut to show the list of shortcuts. Try pressing Alt+Shift+K to get the

complete list. Nobody I know can remember, let alone use, all of these. However,

over time I expect that you will learn to love some of them. My top 5 RStudio-

specific shortcuts are:11

• Ctl+Enter to send a line of code from the code editor (called the Source

Editor in RStudio) to be executed or ‘run’ in the console. Amazingly, some

other prominent IDEs such as Microsoft’s VSCode editor, lack this important

feature by default.

• Ctl+1 and Ctl+2 to switch between the console (for writing test code and

‘run once’ commands) and the code editor (for writing code to keep).

• Alt+Up/Down and Alt+Shift+Up/Down to move and copy lines of code

up and down, handy when you want to re-order your code or make small

changes to a copy of a line of code.

• Ctl+Shift+M will create the pipe operator (%>%, this pipe was created using

the shortcut!), saving time when creating dplyr pipelines, as discussed in

Section 5.

• Ctl+Shift+F10 when you want to restart R, leaving you with a ‘blank slate’

in which packages are not loaded and objects are removed from the global

environment.

• Git integration for collaboration: RStudio provides two mechanisms for sharing your

code with others via sites such as GitHub and GitLab, with the ‘Git’ panel in the

3.9

https://cran.r-project.org/web/packages/addinslist/readme/README.html

27 28www.racfoundation.orgReproducible road safety research with R: A practical introduction

top right pane and via the Terminal panel described in the next section.

• Support for Python, C++ and other languages: a joke on Twitter said “What’s the

best Python editor? RStudio.” Although most Python programmers would probably

disagree, the joke is true in the sense that R has good support for some other

languages: Python and C++ in particular. If you open a Python script in RStudio

on a computer that has Python and the reticulate R package installed, the R

console will magically convert into a Python console when you press Ctl+Enter to

execute a line of Python code, as described in the article “Reticulated Python” on

the RStudio website.

Like R package, an active community of developers is developing a range of extensions and

RStudio itself is gradually evolving to meet the evolving needs of 21st Century data scientists.

If there are any features that you would like to see, you can always ask others for pointers,

e.g. on the RStudio Community forum.

https://blog.rstudio.com/2018/10/09/rstudio-1-2-preview-reticulated-python/
https://community.rstudio.com

27 28www.racfoundation.orgReproducible road safety research with R: A practical introduction

4. R packages
What are packages?

R has over 15,000 packages published on the official ‘CRAN’ site and many more published

on code sharing sites such as GitHub. Packages are effectively plugins for R that extend it in

many ways. Packages are useful because they enhance the range of things you can do with

R, providing additional functions, data and documentation that build on the core (known as

‘base’) R packages. They range from general-purpose packages, such as tidyverse and

sf, to domain-specific packages, such as stats19.

This chapter demonstrates the package lifecycle with reference stats19 and provides a

taster of R’s visualisation capabilities for general purpose packages ggplot2 and dplyr.

The stats19 package is particularly relevant for reproducible road safety research: its

purpose is to download and clean road traffic collision data from the UK’s Department for

Transport. Domain-specific packages, such as stats19, are often written by subject-matter

experts, providing tried and tested solutions within a particular specialism. Packages are

reviewed by code experts prior to being made available via CRAN.

Regardless of whichever packages you install and use, you will take the following steps:12

1. installing the package;

2. loading the package;

3. using the package; and

4. updating the package.

Of these, the third stage takes by far the most amount of time. Stages 1, 2 and 4 are equally

important, however; you cannot use a package unless it has been properly installed, loaded and,

to get the best performance out of the latest version, updated when new versions are released.

We will learn each of these stages of the package lifecycle with the stats19 package.

4.1

29 30www.racfoundation.orgReproducible road safety research with R: A practical introduction

The stats19 R package

Like many packages, stats19 was developed to meet a real world need. STATS19 data

is provided as a free and open resource by the Department for Transport, encouraging

evidence-based and accountable road safety research and policy interventions. However,

researchers at the University of Leeds found that repeatedly downloading and formatting

open STATS19 data was time-consuming, taking valuable resources away from more

valuable (and fun) aspects of the research process. Significantly, manually recoding the data

was error prone. By packaging code, we found that we could solve the problem in a free,

open and reproducible way for everyone (Lovelace et al. 2019).

By abstracting the process to its fundamental steps (download, read, format), the stats19

package makes it easy to get the data into appropriate formats (of classes tbl, data.
frame and sf), ready for further processing and analysis. The package built upon

previous work (Lovelace, Roberts, and Kellar 2016), with several important improvements,

including the conversion of crash data into geographic data in a sf data frame for

geographic research (e.g. Austin, Tight, and Kirby 1997). It enables creation of geographic

representations of crash data, geo-referenced to the correct coordinate reference system,

in a single function called format_sf(). Part-funded by the RAC Foundation, the package

should be of use to academic researchers and professional road safety data analysts

working at local authority and national levels in the UK.

The following sections demonstrate how to install, load and use packages with reference to

stats19. This information can be applied in relation to any package.

Installing packages

The stats19 package is available on CRAN. This means that it has a web page on the

CRAN website at cran.r-project.org with useful information, including who developed the

package, what the latest version is, and when it was last updated (see cran.r-project.org/

package=stats19). More importantly, being ‘on CRAN’ (which technically means ‘available

on the Comprehensive R Archive Network’) means that it can be installed with the

command install.packages() as follows:13

install.packages("stats19")

4.2

4.3

https://cran.r-project.org
https://cran.r-project.org/web/packages/stats19/index.html
https://cran.r-project.org/web/packages/stats19/index.html
https://cran.r-project.org

29 30www.racfoundation.orgReproducible road safety research with R: A practical introduction

You might think that now that the package has been installed we can start using it, but that

is not true. This is illustrated in the code below, which tries and fails to run the find_file_
name() function from the stats19 package to find the file containing STATS19 casualties

data for the year 2019. Check that this function exists by running the following command

?find_file_name:

find_file_name(years = 2019, type = "casualties")

Error in find_file_name(years = 2019, type = "casualties"): could not
find function "find_file_name"

Loading packages

After you have installed a package the next step is to ‘load’ it.14 Load the stats19 package,

that was installed in the previous section, using the following code:

library(stats19)

Data provided under OGL v3.0. Cite the source and link to:
www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

What happened? Other than the message telling us about the package’s datasets (most

packages load silently, so do not worry if nothing happens when you load a package), the

command above made the functions and datasets in the package available to us. Now we

can use functions from the package without an error message, as follows:

find_file_name(years = 2019, type = "casualties")

[1] "DfTRoadSafety_Casualties_2019.zip"

This raises the question: how do you know which functions are available in a particular

package? You can find out using the autocompletion, i.e. by pressing Tab after typing the

package’s name, followed by two colons. Try typing stats19:: and then hitting Tab, for

example. You should see a load of function names appear, which you view by pressing Up

and Down on your keyboard.

The final thing to say about packages is that they can be used without being loaded by

typing package::function(). We used this before in Section 2.8, where we imported csv

data using the readr package via readr::read_csv().

So stats19::find_file_name(years = 2019, type = "casualties") works even if

the package isn’t loaded.

4.4

31 32www.racfoundation.orgReproducible road safety research with R: A practical introduction

You can test this by running the sf_extSoftVersion() command from the sf package.

This command reports the versions of key geographic libraries installed on your system.

In the first attempt below, the command fails and reports an error. In the second and third

attempts, utilising :: and library, you can see that the command succeeds:

try running a function without loading the sf package first
sf_extSoftVersion()

Error in sf_extSoftVersion(): could not find function
"sf_extSoftVersion"

run a function from a package’s namespace without loading it but using ::
sf::sf_extSoftVersion()

GEOS GDAL proj.4 GDAL_with_GEOS USE_PROJ_H
"3.8.0" "3.0.4" "7.0.0" "true" "true"

fun a function call after loading the package (the most common way)
library(sf)

Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 7.0.0

sf_extSoftVersion()

GEOS GDAL proj.4 GDAL_with_GEOS USE_PROJ_H
"3.8.0" "3.0.4" "7.0.0" "true" "true"

As a bonus, try running the command sf::sf_extSoftVersion without the brackets ().

What does that tell you about the package?

31 32www.racfoundation.orgReproducible road safety research with R: A practical introduction

Using packages

After loading a package, as described in the previous section, you can start using its

functions. In the stats19 package that means the following command get_stats19() will

now work:

crashes_2019 = get_stats19(year = 2019, type = "accidents")
nrow(crashes_2019)

[1] 117536

This command demonstrates the value of packages. It would have been possible to get the

same dataset by manually downloading and cleaning the file from the STATS19 website on

data.gov.uk. However, by using the package, the process has been achieved much faster

and with fewer lines of code than would have been possible using general-purpose base R

functions. The result of the nrow() function call shows that we have downloaded a decent

amount of data representing over 100k road traffic casualty incidents across Great Britain

in 2019.

We will use other functions from the package in subsequent sections of this guide. If you

would like to learn more about stats19 and how it can be used for road safety research,

check out its vignettes. The stats19 vignette, for example, should appear in the Help panel

in the bottom right panel in RStudio after running the following command:

vignette("stats19")

Updating packages

Packages can be updated with the command update.package() or in ‘Tools > Check for

Package Updates’ in RStudio. You only need to install a package once but packages can be

updated many times. It is important to update packages regularly because updates will offer

bug-fixes and other improvements. To update just one package, you can give the function a

package name, e.g.:

update.packages(oldPkgs = "stats19")

Completing the following short exercises will ensure you’ve got a good understanding of

packages and package versions.

1. Take a look in the ‘Packages’ tab in the ‘Files’ pane in RStudio (bottom right by

default).

2. What version of the stats19 package is installed on your computer?

3. What happens the second time you run update.packages(). Why?

4.5

4.6

https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data
https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data

33 34www.racfoundation.orgReproducible road safety research with R: A practical introduction

ggplot2

ggplot2 is a generic plotting package that is part of the ‘tidyverse’ meta-package.

The tidyverse is an ‘Opinionated collection of R packages designed for data science.’

ggplot2 is flexible, popular and has dozens of add-on packages which build on it, such as

gganimate. To plot non-spatial data, it works as follows (the command should generate the

image shown in Figure 4.1, showing a bar chart of the number of crashes over time):

library(ggplot2)
ggplot(crashes_2019) + geom_bar(aes(date), width = 1)

Figure 4.1: A simple ggplot2 graph

A key feature of the ggplot2 package is the function ggplot2(). This function initiates

the creation of a plot by taking a data object as its main argument followed by one or more

‘geoms’ that represent layers (in this case a bar chart represented by the function geom_
bar()). Another distinctive feature of ggplot2() is the use of + operator to add layers.

4.7

https://www.tidyverse.org

33 34www.racfoundation.orgReproducible road safety research with R: A practical introduction

The package is excellent for generating publication quality figures. Starting from a basic

idea, you can make incremental tweaks to a plot to get the output you want. Building on the

figure above, we could make the bin width (width of the bars) wider, add colour depending

on the crash severity and use count (Figure 4.2) or proportion (Figure 4.3) as our y axis, for

example, as follows:

ggplot(crashes_2019) + geom_bar(aes(date, fill = accident_severity),
 width = 1)
ggplot(crashes_2019) +
 geom_bar(aes(date, fill = accident_severity), width = 1, position =
"fill") + ylab("Proportion of crashes")

35 36www.racfoundation.orgReproducible road safety research with R: A practical introduction

Figure 4.2: Demonstration of fill and position arguments in ggplot2

0

100

200

300

400

500

Jan 2019 Apr 2019 Jul 2019 Oct 2019 Jan 2020
date

co
un

t

accident_severity
Fatal

Serious

Slight

0.00

0.25

0.50

0.75

1.00

Jan 2019 Apr 2019 Jul 2019 Oct 2019 Jan 2020
date

Pr
op

or
tio

n
of

 c
ra

sh
es

accident_severity
Fatal

Serious

Slight

35 36www.racfoundation.orgReproducible road safety research with R: A practical introduction

The package is huge and powerful, with support for a very wide range of plot types and

themes, so it is worth taking time to read the documentation associated with the package,

starting with the online reference manual and heading towards the online version of the

package’s official book (Wickham 2016). As a final taught bit of ggplot2 code in this section,

create a facetted plot showing how the number of crashes per hour varies across the days of

the week by typing the following into the Source Editor and running the chunk line-by-line (the

meaning of the commands should become clear by the end of the next section):

library(tidyverse)
crashes_2019 %>%
 mutate(hour = lubridate::hour(datetime)) %>%
 mutate(day = lubridate::wday(date)) %>%
 filter(!is.na(hour)) %>%
 ggplot(aes(hour, fill = accident_severity)) +
 geom_bar(width = 1.01) +
 facet_wrap(~day)

Figure 4.3: A plot showing a facetted time series plot made with ggplot2

7

4 5 6

1 2 3

0 5 10 15 20

0 5 10 15 20 0 5 10 15 20

0

500

1000

1500

0

500

1000

1500

0

500

1000

1500

hour

co
un

t

accident_severity
Fatal

Serious

Slight

https://ggplot2.tidyverse.org/reference/index.html
https://ggplot2-book.org

37 38www.racfoundation.orgReproducible road safety research with R: A practical introduction

Exercises: 1. Install a package that build on ggplot2 that begins with with gg. Hint: enter

install.packages(gg) and hit Tab when your cursor is between the g and the). 2. Open

a help page in the newly installed package with the ?package_name::function() syntax.

3. Load the package. 4. Bonus: try using functionality from the new ‘gg’ package building

on the example above to create plots like those shown below (Hint: the right plot below uses

the economist theme from the ggthemes package; try other themes).

dplyr

Another useful package in the tidyverse is dplyr, which stands for ‘data pliers,’ which

provides a handy syntax for data manipulation. dplyr has many functions for manipulating

data frames and using the pipe operator %>%. The pipe operator puts the output of one

command into the first argument of the next, as shown below (Note: the results are the same):

library(dplyr)
class(crashes)

[1] "data.frame"

crashes %>% class()

[1] "data.frame"

We will learn more about this package and its other functions in Section 5.

4.8

37 38www.racfoundation.orgReproducible road safety research with R: A practical introduction

5. Manipulating data
This section is an introduction to manipulating datasets using the dplyr package. As

outlined in the previous section, dplyr and ggplot2 are part of the tidyverse, which aims

to provide a user-friendly framework for data science (Grolemund and Wickham 2016).

Experience of teaching R over the past few years suggests that many people find it easier to get

going with data driven research if they learn the ‘tidy’ workflow presented in this section. However,

if you do not like this style of R code or you are simply curious, we encourage you to try alternative

approaches for achieving the similar results using base R (R Core Team 2020a)15 , the data.table

R package (Dowle and Srinivasan 2019) or other languages such as Python or Julia. If you just

want to get going with processing data, the tidyverse is a solid and popular starting point.

Before diving into the tidyverse, it is worth re-capping where we have got to so far as we

have covered a lot of ground. Section 2 introduced R’s basic syntax; Section 3 showed how

to use the Source Editor and other features of RStudio to support data science; and Section

4 introduced the concept and practicalities of R packages, with reference to stats19,

ggplot2 and dplyr.

In this section, we will start with a blank slate. In Section 2 we learned that in R having a

‘clear desk’ means an empty global environment. This can be achieved by running the

following command, which removes the list() of all objects returned by the function ls():

rm(list = ls())

tibbles

Although the data processing techniques in R are capable of handling large datasets, such

as the crashes_2019 object that we created in the previous section, representing 100k+

casualties, it makes sense to start small. Let’s start by re-creating the crashes dataset from

Section 2, but this time using the tidyverse tibble() function. This is the tidyverse

equivalent of base R’s data.frame. tibble objects can be created, after loading the

tidyverse, as follows:

library(tidyverse)
crashes = tibble(
 casualty_type = c("pedestrian", "cyclist", "cat"),
 casualty_age = seq(from = 20, to = 60, by = 20),
 vehicle_type = c("car", "bus", "tank"),
 dark = c(TRUE, FALSE, TRUE)
)

In the previous code chunk, we passed four vector objects as named arguments to the

5.1

https://www.python.org
https://julialang.org

39 40www.racfoundation.orgReproducible road safety research with R: A practical introduction

tibble function, resulting in columns such as casualty_type. A tibble is just a fancy

way of representing data.frame objects, preferred by tidyverse users and optimised

for data science. It has a few sensible defaults and advantages compared with the data.
frame, one of which can be seen by printing a tibble:

class(crashes)

[1] "tbl_df" "tbl" "data.frame"

crashes

A tibble: 3 x 4
casualty_type casualty_age vehicle_type dark
<chr> <dbl> <chr> <lgl>
1 pedestrian 20 car TRUE
2 cyclist 40 bus FALSE
3 cat 60 tank TRUE

Note the <chr>, <dbl> or <lgl> text below each column, providing a quick indication of

the class of each variable–this is not provided when using data.frame.

filter() and select() rows and columns

In the previous section, we briefly introduced the package dplyr, which provides an

alternative to base R for manipulating objects. dplyr provides different, and some would

argue simpler, approaches for subsetting rows and columns than base R.

dplyr operations for subsetting rows (with the function filter()) and columns (with the

function select()) are demonstrated below. Here we can also see the use of the pipe

operator %>% to take the dataset and apply the function to that dataset.

crashes %>% filter(casualty_age > 50) # filters rows

A tibble: 1 x 4
casualty_type casualty_age vehicle_type dark
<chr> <dbl> <chr> <lgl>
1 cat 60 tank TRUE

crashes %>% select(casualty_type) # select just one column

A tibble: 3 x 1
casualty_type
<chr>
1 pedestrian
2 cyclist
3 cat

It should be clear what happened: filter() returns only rows that match the criteria in the

5.2

39 40www.racfoundation.orgReproducible road safety research with R: A practical introduction

function call, only observations with a casualty_age greater than 50 in this case. Likewise,

select() returns data objects that include only columns named inside the function call,

casualty_type in this case.

To gain a greater understanding of the functions, type and run the following commands,

which also illustrate how the %>% can be used more than once to manipulate data (more on

this soon):

crashes_darkness = crashes %>% filter(dark)
crashes_a = crashes %>% select(contains("a"))
crashes_darkness_a = crashes %>%
 filter(dark) %>%
 select(contains("a"))

Can you guess what the dimensions of the resulting objects will be? Write down your

guesses for the number of rows and number of columns that the new objects,

crashes_darkness to crashes_darkness_a, have before running the following

commands to find out. This also demonstrates the handy function dim(), short for

dimension (results not shown):16

dim(crashes)
dim(crashes_darkness)
?contains # get help on contains() to help guess the output of the next line
dim(crashes_a)
dim(crashes_darkness_a)

Look at the help pages associated with filter(), select() and the related function

slice() as follows and try running the examples that you will find at the bottom of the help

pages for each to gain a greater understanding (note you can use the package::function

notation to get help on functions also):

?dplyr::filter
?dplyr::select
?dplyr::slice

41 42www.racfoundation.orgReproducible road safety research with R: A practical introduction

Ordering and selecting the ‘top n’

Other useful pipe-friendly functions are arrange() and top_n(). arrange() can be used to

sort data. Within. the arrage() function, optional arguments can be used to define the order

in which it is sorted. top_n() simply selects the top ‘n’ number of rows in your data frame.

We can use these functions to arrange datasets and take the top most ‘n’ values, as follows:

crashes %>%
 arrange(vehicle_type)

A tibble: 3 x 4
casualty_type casualty_age vehicle_type dark
<chr> <dbl> <chr> <lgl>
1 cyclist 40 bus FALSE
2 pedestrian 20 car TRUE
3 cat 60 tank TRUE

crashes %>%
 top_n(n = 1, wt = casualty_age)

A tibble: 1 x 4
casualty_type casualty_age vehicle_type dark
<chr> <dbl> <chr> <lgl>
1 cat 60 tank TRUE

Summarise

A powerful two-function combination is group_by() and summarise(). Used together,

they can provide grouped summaries of datasets. In the example below, we find the mean

age of casualties in dark and light conditions.

crashes %>%
 group_by(dark) %>%
 summarise(mean_age = mean(casualty_age))

`summarise()` ungrouping output (override with `.groups` argument)

A tibble: 2 x 2
dark mean_age
<lgl> <dbl>
1 FALSE 40
2 TRUE 40

5.3

5.4

41 42www.racfoundation.orgReproducible road safety research with R: A practical introduction

The example above shows a powerful feature of these pipelines. Many operations can be

‘chained’ together, whilst keeping readability with subsequent commands stacked below

earlier operations. The combination of group_by() and summarise() can be very useful

in preparing data for visualisation with a ggplot2 function. Another useful feature of the

tidyverse from a user perspective is the autocompletion of column names mid pipe. If you

have not noticed this already, you can test it by typing the following, putting your cursor just

before the) and pressing Tab:

crashes %>% select(ca) # press Tab when your cursor is just after the a

You should see casualty_age and casualty_type pop up as options that can be

selected by pressing Up and Down. This may not seem like much, but when analysing large

datasets with dozens of variables, it can be a godsend.

Rather than providing a comprehensive introduction to the tidyverse suite of packages,

this section should have offered enough to get started with using it for road safety data

analysis. For further information, check out up-to-date online courses from respected

organisations like Data Carpentry and the free online books such as R for Data Science

(Grolemund and Wickham 2016).

Tidyverse exercises

1. Use dplyr to filter rows in which casualty_age is less than 18, and then 28.

2. Use the arrange function to sort the crashes object in descending order of age

(Hint: see the ?arrange help page).

3. Read the help page of dplyr::mutate(). What does the function do?

4. Use the mutate function to create a new variable, birth_year, in the crashes

data.frame which is defined as the current year minus their age.

5. Bonus: Use the %>% operator to filter the output from the previous exercise so that

only observations with birth_year after 1969 are returned.

5.5

https://datacarpentry.org/R-ecology-lesson/index.html
https://bookdown.org
https://r4ds.had.co.nz

43 44www.racfoundation.orgReproducible road safety research with R: A practical introduction

6. Temporal data
Time is ubiquitous in road safety data, since collisions and road safety implementations

always happen at some point in time. This section will show how you can analyse the

temporal dimensions of the real world crashes_2019 object we created in Section 4,

and then demonstrate how to handle time series data in base R, as well as with hms and

lubridate packages. The aim is to get you up-to-speed with how data analysis with time

data ‘feels’ before learning the details in subsequent sections. If you are the kind of person

who likes to know the details first, feel free to skip this section and return to it later.

Temporal analysis of crash data

To get a feel for temporal data analysis in R, let’s start by reading-in crash data for 2019 with

the stats19 package by typing the following into the Source Editor and running the code,

line-by-line, as taught in Section 3:

library(stats19)
crashes_2019 = get_stats19(2019)

Note that, unlike the longer crashes_2019 = get_stats19(year = 2019, type =
"accidents") used in Section 4, we did not use named arguments in this code chunk.

Instead of year = 2019, we simply typed 2019. That is possible because R functions can

be specified by name matching or order: the first argument of get_stats() is year, so the

function is expecting a year value. Also, although we didn’t explicitly specify the accidents

table, type = "accidents" is the default value, so type only needs to be specified when

importing casualty and vehicle datasets.

With that educational aside out of the way, we will now take a look at the time variables that

are actually in our newly read-in dataset:

library(tidyverse)
crashes_2019 %>%
 select(matches("time|date")) %>%
 names()

[1] "date" "time" "datetime"

Building on the previous section and a bit of guesswork, it should be clear what just

happened: we selected variables that match (with the matches() function) the character

strings "time" or (as indicated by the | vertical pipe symbol) "date" and returned the

matching variable names. This shows that the stats19 package gives you not one, not

two, but three temporal variables.

6.1

43 44www.racfoundation.orgReproducible road safety research with R: A practical introduction

Exercises:

1. Print the first 6 and then the first 10 elements of each of the three temporal

variables in crashes_2019.

2. What is the class of each variable (technically, of each vector)?

3. Bonus: Extract the weekday from the variable called date.

4. Bonus: How many crashes happened on Monday?

Of the three time variables, it should be clear from the outcome of previous exercises that

datetime contains the most useful information. To consolidate the plotting know-how learned

in Section 4, we shall start by simply plotting the datetime object (Figure 6.1). Plotting data

is a good way of understanding new datasets and the variables they contain. Create the

following three plots to show how date and time vary as a function of datetime:

library(ggplot2)
ggplot(crashes_2019) + geom_point(aes(datetime, date))
ggplot(crashes_2019) + geom_point(aes(datetime, time))
b = c("07:00", "09:00", "12:00", "17:00", "19:00")
ggplot(crashes_2019) + geom_point(aes(datetime, time), alpha = 0.01) +
 scale_y_discrete(breaks = b)

45 46www.racfoundation.orgReproducible road safety research with R: A practical introduction

Figure 6.1: Three plots of the datetime (x axis) in relation to the date and time axis

45 46www.racfoundation.orgReproducible road safety research with R: A practical introduction

The three figures above tell us many things about the contents of the three temporal

variables. It even provides insight into the temporal distribution of road casualties in Great

Britain. The first two plots (Figure 6.1 and 6.2) show: 1) that the date variable is identical

to the datetime variable (at least on the daily resolution than can be seen on the graph);

and 2) that time values repeat regularly for the range of dates in datetime (from the start

of Jan 2019 to end of Dec 2019). Figure 6.3 makes use of ggplot2‘s functionality to

show only certain labels on the Y axis and reduced opacity, so that overlapping points are

not completely black. This by far is the most useful of the three plots, showing that most

crashes happen between around 7am and 7pm, with a ’long tail’ of crashes in the evening,

and that for most of the year there is a clear weekly cycle, reflecting the uptick in crashes

during the rush hour commute on weekdays, a pattern that is greatly diminished during

several weeks in summer (perhaps corresponding with summer holidays). The 52 weeks of

the year can be distinguished even in this small and simple plot, highlighting the ability of

visualisation to help understand data. Next, let’s look at how the time-of-day that crashes

occur varies as a function of season, severity and day of week.

From the datetime object of class POSIXct, any type of time information can be extracted.

This includes the minute, hour, day of week and month of the crash (or other) event that the

object records.

47 48www.racfoundation.orgReproducible road safety research with R: A practical introduction

Building on the time series plot we created in Section 4.7, let’s create a graph showing how

the hourly distribution of crash numbers changes during the course of a working week.

We will do this first by preprocessing the data, creating a new object called crashes_dow,

containing hour and day columns, then filtering out weekend, and plotting the results, as

shown in the code chunk below and Figure 6.2:

days of the week:
dow = c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday")
crashes_dow = crashes_2019 %>%
 mutate(hour = lubridate::hour(datetime)) %>%
 mutate(day = factor(weekdays(date), levels = dow))

crashes_dow %>%
 filter(!is.na(hour) & !day %in% c("Saturday", "Sunday")) %>%
 ggplot(aes(hour)) +
 geom_bar(width = 1.01) +
 facet_wrap(~day, nrow = 1)

Figure 6.2: Facetted time series showing how the number of crashes increases

during the working week

The result in Figure 6.2 is useful, but if we’re interested in the number of crashes per hour on

different days of the week relative to the average, we need to undertake more preprocessing

steps. We will count the number of crashes per hour for all 5 working days and then divide

by 5 to get the average number of crashes per hour during weekdays. Then we will count

the number of crashes per hour/week combination. Finally we will divide the latter by the

former. These steps are shown in the code chunk below, which results in Figure 6.3.

47 48www.racfoundation.orgReproducible road safety research with R: A practical introduction

crashes_day_rel = crashes_dow %>% # create ‘day of week relative’ object
 filter(!is.na(hour) & !day %in% c("Saturday", "Sunday")) %>% # none on
weekends
 select(day, hour) %>% # keep only time columns
 group_by(hour) %>% # group by hour
 mutate(n_per_hour = n()/5) %>% # number per hour (divide by 5 for n. days)
 group_by(day, hour) %>% # group by day and hour
 summarise(n_hday = n(), n_h = first(n_per_hour)) %>% # summarise results
calculate relative n. crashes per hour/day
 mutate(hday_relative = n_hday / n_h)
 summary(crashes_day_rel)

day hour n_hday n_h
Sunday : 0 Min. : 0.00 Min. : 68.0 Min. : 76.6
Monday :24 1st Qu.: 5.75 1st Qu.: 226.8 1st Qu.: 290.0
Tuesday :24 Median :11.50 Median : 790.0 Median : 794.1
Wednesday:24 Mean :11.50 Mean : 741.6 Mean : 741.6
Thursday :24 3rd Qu.:17.25 3rd Qu.:1006.2 3rd Qu.: 976.5
Friday :24 Max. :23.00 Max. :1756.0 Max. :1669.0
Saturday : 0
hday_relative
Min. :0.7182
1st Qu.:0.9397
Median :0.9925
Mean :1.0000
3rd Qu.:1.0516
Max. :1.6198

crashes_day_rel %>%
 ggplot() +
 geom_col(aes(hour, hday_relative)) +
 facet_wrap(~day, nrow = 1)

49 50www.racfoundation.orgReproducible road safety research with R: A practical introduction

Figure 6.3: Facetted time series showing relative number of crashes per hour by

day in the working week

The results clearly show that Friday is a dangerous day as many of the columns are above

1 (NB as this is a relative calculation, columns that are less than 1 indicate that there are

less crashes per hour on that day than average whereas those above 1 indicate that there

are more crashes per hour on that day than average). The extent to which the high relative

number of crashes in the most anomalous hours (Friday evening) is due increased exposure

vs increased risk per km travelled cannot be ascertained by this plot but it certainly suggests

that Friday afternoon and evening is a worthy focus of road safety research.

Exercises:

1. Building on the code above, show the absolute and relative number of crashes per

hour on Saturday and Sunday.

2. Filter the dataset so it contains only data from two police forces of your choice

(e.g. West Yorkshire and Metropolitan Police).

3. Try creating plots similar to those shown above but facetted by police force rather

than by day of the week.

49 50www.racfoundation.orgReproducible road safety research with R: A practical introduction

Handling dates and date-times

It is worth remembering that base R already has decent support for dates and datetimes,

although the base R functions are not particularly intuitive. This is shown in the code chunk

below, which creates objects representing the date and time of a fictitious crash event on a

cold winter’s morning, 1st January 2020, and a subsequent road safety intervention on the

20th October 2020:

creates date/time as a character
crash_datetime_character = "2020-01-01 08:35"
converts date/time to a object of the POSIXct type
crash_datetime = as.POSIXct(crash_datetime_character)
class(crash_datetime)

[1] "POSIXct" "POSIXt"

converts date/time to a object of the Date type
intervention_date_character = "2020-10-20"
intervention_date = as.Date(intervention_date_character)
class(intervention_date)

[1] "Date"

see ?as.POSIXct for more examples

‘POSIXct,’ ‘POSIXt’ and ‘Date’ are data types for dates and time that enable easy

manipulation of such data. Fortunately for most users, there are easier ways to work with

time series data, starting with the hms package.

Hours, minutes seconds with hms

The hms library in the tidyverse can be used to process hours, minutes and seconds,

as shown below. See a very basic demo of the package and links to the package’s help

pages with the following commands in which we use the package without loading it with the

library() function, demonstrating the package::function() syntax taught in Section 4:

library(tidyverse)

crash_time_character = "08:35:00"
crash_time_hms = hms::as_hms(crash_time_character)
class(crash_time_hms)

[1] "hms" "difftime"

?hms::`hms-package`

6.2

6.3

51 52www.racfoundation.orgReproducible road safety research with R: A practical introduction

As the package’s name suggests, it is used for dealing with hours, minutes and seconds. It

can round time objects of class hms to the nearest second (or any multiple of a second):

time to the nearest second
hms::round_hms(crash_time_hms, 1)
08:35:00

time to the nearest hour
hms::round_hms(crash_time_hms, 1 * 60 * 60)
09:00:00

time to the nearest half hour
hms::round_hms(crash_time_hms, 1 * 30 * 60)

08:30:00

It can also convert simple text strings into time objects, e.g. as follows (Note: we do not

need to include the :00):

hms::parse_hm("08:35")

08:35:00

The lubridate package

In many cases the most useful and easy to use package when working with temporal data is

lubridate. Having installed it, load it as follows:

library(lubridate)

The simplest example of a Date object that we can analyze is just the current date, i.e.:

today()

[1] "2020-11-20"

We can manipulate this object using several lubridate functions to extract the current day,

month, year, weekday and so on…

x = today()
day(x)
wday(x)
wday(x) %in% c(1, 6) # is it the weekend?
month(x)
year(x)

6.4

51 52www.racfoundation.orgReproducible road safety research with R: A practical introduction

Base R can also be used to extract data e.g. # Base R function to get the day of
week weekdays(x).

Exercises:

1. Look at the help page of the lubridate function month to see how it is possible

to extract the current month as a character vector.

2. Look at other functions in lubridate to extract the current weekday as a number,

the week of year and the day of the year.

Date variables are often stored simply as character vectors. This is a problem, since R is not

always smart enough to distinguish between character vectors representing Dates. lubridate

provides functions that can translate a wide range of date encodings such as ymd(), which

extracts the Year, Month and Day from a character string, as demonstrated below.

as.Date("2019-10-17") # works
as.Date("2019 10 17") # fails
ymd("2019 10 17") # works
dmy("17/10/2019") # works

Import functions, such as read_csv, try to recognize the Date variables. Sometimes this

fails. You can manually create Date objects, as shown below:

x = c("2009-01-01", "2009-02-02", "2009-03-03")
x_date = ymd(x)
x_date

[1] "2009-01-01" "2009-02-02" "2009-03-03"

Exercises:

1. Extract the day, the year-day, the month and the weekday (as a non-abbreviated

character vector) of each element of x_date.

2. Convert "09/09/93" into a date object and extract its weekday.

3. Bonus: Read the help page of as.Date and strptime for further details on base

R functions for dates.

4. Bonus: Read the Chapter 16 of R for Data Science book for further details on

lubridate package.

https://r4ds.had.co.nz/dates-and-times.html

53 54www.racfoundation.orgReproducible road safety research with R: A practical introduction

Dates in a data frame

We can use Dates for subsetting events in a dataframe. For example, if we define x_date as

before and add it to the crash dataset, i.e.:

crashes$casualty_day = x_date

Then we can subset events using Dates. For example:

the events that ocurred in the first week of the month
filter(crashes, day(casualty_day) < 7)

A tibble: 3 x 5
casualty_type casualty_age vehicle_type dark casualty_day
<chr> <dbl> <chr> <lgl> <date>
1 pedestrian 20 car TRUE 2009-01-01
2 cyclist 40 bus FALSE 2009-02-02
3 cat 60 tank TRUE 2009-03-03

the events occurred on monday
filter(crashes, weekdays(casualty_day) == "Monday")

A tibble: 1 x 5
casualty_type casualty_age vehicle_type dark casualty_day
<chr> <dbl> <chr> <lgl> <date>
1 cyclist 40 bus FALSE 2009-02-02

Exercises:

1. Select only the events (rows in crashes) that occurred in January.

2. Select only the events that ocurred in an odd year-day.

3. Select only the events that ocurred in a leap-year (Hint: check the function

leap_year).

4. Select only the events that ocurred during the weekend or in June.

5. Select only the events that ocurred during the weekend and in June.

6. Count how many events ocurred during each day of the week.

6.5

53 54www.racfoundation.orgReproducible road safety research with R: A practical introduction

Components of time objects

Now we’ll take a look at the time components of a Date. Using the function hms (acronym

for Hour, Minutes, Seconds) and its subfunctions such as hm or ms, we can parse a

character vector representing several times into an Hour object (which is technically called a

‘period object’).

x = c("18:23:35", "00:00:01", "12:34:56")
x_hour = hms(x)
x_hour

[1] "18H 23M 35S" "1S" "12H 34M 56S"

We can manipulate these objects using several lubridate functions to extract the hour

component, the minutes, and so on:

hour(x_hour)

[1] 18 0 12

minute(x_hour)

[1] 23 0 34

second(x_hour)

[1] 35 1 56

If the Hour data does not specify the seconds, we just use a subfunction of hms, namely hm,

to get the hours and minutes, rather than hours, minutes and seconds.

x = c("18:23", "00:00", "12:34")
(x_hour = hm(x))

[1] "18H 23M 35S" "1S" "12H 34M 56S"

We can use Hour data also for subsetting events, like we did for Dates. Let’s add a new

column for hour to the crashes data:

crashes$casualty_hms = hms(c("18:23:35", "00:00:01", "12:34:56"))
crashes$casualty_hour = hour(crashes$casualty_hms)

Exercises:

1. Filter only the events that occurred after midday (i.e. the PM events). Hint: your

answer may include >= 12.

2. Filter only the events that ocurred between 15:00 and 19:00.

6.6

55 56www.racfoundation.orgReproducible road safety research with R: A practical introduction

7. Spatial data
From displaying simple point data to examining collision density along routes or between

areas, the geographic property of STATS19 data is one of its most useful attributes.

Mapping is a hugely useful and powerful aspect of R and has many applications in road

safety, both in understanding geographic trends and presenting insight to colleagues. This

aspect of R is covered in detail in the book Geocomputation With R (Lovelace, Nowosad,

and Muenchow 2019). By mapping collision data in R, you can add layers containing other

geographic datasets to further understand the reasons for certain trends. This can lead

to new opportunities for intervention and collaboration with other parties who may have

mutually compatible solutions for reaching their goals. We will use the following packages in

this section:

library(sf) # load the sf package for working with spatial data
library(tidyverse) # load the tidyverse as before

sf objects

All road crashes happen somewhere and, in the UK at least, all collisions recorded by the

police are given geographic coordinates. These can help in prioritising interventions to save

lives by focusing on ‘crash hotspots.’ R has strong geographic data capabilities with the

sf package, providing a generic class for spatial vector data. Points, lines and polygons

are represented in sf as objects in a special ‘geometry column,’ typically called ‘geom’

or ‘geometry,’ extending the data frame class we’ve already seen in crashes, created in

Section 5.1 (repeated here to consolidate data frame creation):

crashes = tibble(
 casualty_type = c("pedestrian", "cyclist", "cat"),
 casualty_age = seq(from = 20, to = 60, by = 20),
 vehicle_type = c("car", "bus", "tank"),
 dark = c(TRUE, FALSE, TRUE)
)

7.1

55 56www.racfoundation.orgReproducible road safety research with R: A practical introduction

Create an sf data frame called crashes_sf that expands the crashes data frame to

include a geometry column based on the crashes longitude and latitude data as follows:

crashes_sf = crashes # create copy of crashes dataset
crashes_sf$longitude = c(-1.3, -1.2, -1.1)
crashes_sf$latitude = c(50.7, 50.7, 50.68)
crashes_sf = st_as_sf(crashes_sf, coords = c("longitude", "latitude"),
 crs = 4326)
st_as_sf converts longitude and latitude coordinates into spatial
objects using a specified Coordinate Reference System (see 7.6)
plot(crashes_sf[1:4]) # basic plot
mapview::mapview(crashes_sf) # for interactive map

Exercises:

1. Plot only the geometry column of crashes_sf (Hint: the solution may contain

$geometry). If the result is like that in Figure 7.1, congratulations, it worked!

2. Plot crashes_sf, only showing the age variable.

3. Plot the 2nd and 3rd crashes, showing which happened in the dark.

4. Bonus: How far apart are the points? (Hint: sf functions begin with st_)

5. Bonus: Near which settlement did the tank runover the cat?

Figure 7.1: The crashes_sf dataset shown in map form with the function plot()

20 30 40 50 60

casualty_age

0.0 0.5 1.0

dark

57 58www.racfoundation.orgReproducible road safety research with R: A practical introduction

Reading and writing spatial data

You can read and write spatial data with read_sf() and write_sf(), as shown below (see

?read_sf):

write_sf(zones, "zones.geojson")
saves the spatial dataset called zones as geojson file type
write_sf(zones, "zmapinfo", driver = "MapInfo file")
saves the dataset as a MapInfo file
read_sf("zmapinfo") # reads-in mapinfo file

See Chapter 6 of Geocomputation with R for further information (Lovelace, Nowosad, and

Muenchow 2019).

sf polygons

sf objects can also represent administrative zones. This is illustrated below with reference to

zones, a spatial object representing the Isle of Wight, that we will download using the pct

package (Note: the [1:9] appended to the function selects only the first 9 columns).

zones = pct::get_pct_zones("isle-of-wight")[1:9]

Exercises:

What is the class of the zones object?

1. What are its column names?

2. Print its first 2 rows and columns 6:8 (the result is below).

Simple feature collection with 2 features and 5 fields
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: -1.301131 ymin: 50.69052 xmax: -1.28837 ymax:
50.70547
geographic CRS: WGS 84
A tibble: 2 x 6
geo_code all bicycle foot car_driver geometry
<chr> <dbl> <dbl> <dbl> <dbl>
<MULTIPOLYGON [°]>
1 E01017326 698 23 285 286 (((-1.289993 50.69766, -1.290177
50.…
2 E01017327 720 25 225 374 (((-1.295712 50.69383, -1.29873
50.6…

7.2

7.3

57 58www.racfoundation.orgReproducible road safety research with R: A practical introduction

Spatial subsetting and sf plotting

Like index and value subsetting, spatial subsetting can be done with the [] notation. We

can identify the crashes (crashes_sf) that occur in the Isle of Wight (zones) by subsetting

as follows (i.e. subset zones by whether it contains data in crashes_sf):

zones_containing_crashes = zones[crashes_sf,]

To plot a new layer on top of an existing sf plot, use the add = TRUE argument, e.g. as follows:

plot(zones$geometry) # plot just the geometry of one layer
plot(zones_containing_crashes$geometry, col = "grey", add = TRUE)

Remember to plot only the geometry column of objects to avoid multiple maps. Colours

can be set with the col argument.

Exercises:

1. Plot the geometry of the zones, with the zones containing crashes overlaid on top

in red (see Figure 7.2).

2. Plot the zone containing the 2nd crash in blue (see Figure 7.2).

3. Bonus: Plot all zones that intersect with a zone containing crashes, with the actual

crash points plotted in black (see Figure 7.2).

7.4

59 60www.racfoundation.orgReproducible road safety research with R: A practical introduction

Figure 7.2: Illustration of the results of spatial subsetting.

59 60www.racfoundation.orgReproducible road safety research with R: A practical introduction

Geographic joins

Geographic joins involve assigning values from one object to a new column in another,

based on the geographic relationship between them. With sf objects, the data from the

crashes_sf dataset is joined onto the ‘target’ zones dataset, to create a new object called

zones_joined:

zones_joined = st_join(zones[1], crashes_sf)

The above code takes the geo_code column data from zones, matches it to the geometry

column in crashes_sf and then joins it to the crashes that have occurred in those geo_

codes. The matched, joined geo_code is a new column in the zone_joined dataset. We

now know the administrative geo_code in which each crash occured.

Exercises:

1. Plot the casualty_age variable of the new zones_joined object (see Figure 7.3,

to verify the result).

2. How many zones are returned in the previous command?

3. Select only the geo_code column from the zones and the dark column from

crashes_sf and use the left = FALSE argument to return only zones in which

crashes occurred. Plot the result. (Hint: it should look like the map shown in Figure 7.3)

See Chapter 4 of Geocomputation with R (Lovelace, Nowosad, and Muenchow 2019) for

further information on geographic joins.

7.5

61 62www.racfoundation.orgReproducible road safety research with R: A practical introduction

Figure 7.3: Illustration of geographic joins.

20
30

40
50

60

casualty_age

geo_code

dark

61 62www.racfoundation.orgReproducible road safety research with R: A practical introduction

Coordinate Reference Systems

A Coordinate Reference Systems (CRS) is used for plotting data on maps. There are

many systems in use but they can generally be classified into two groups; ‘projected’ and

‘geographic.’ A projected system, such as Eastings/Northings, plots locations onto a flat 2D

projection of the Earth’s surface. A geographic system, such as Longitude/Latitude, refers to

locations on the 3D surface of the globe. Distance and direction calculations work differently

between geographic and projected CRSs, so it is often necessary to convert from one to

another. Fortunately, R makes this very easy, and every CRS has its own unique reference

number. For example, 27700 for the British National Grid system.

CRSs define how two-dimensional points (such as longitude and latitude) are actually

represented in the real world. A CRS value is needed to interpret and give true meaning to

coordinates. You can get and set CRSs with the command st_crs(). Transform CRSs

with the command st_transform(), as demonstrated in the code chunk below, which

converts the ‘lon/lat’ geographic CRS of crashes_sf into the projected CRS of the British

National Grid:

crashes_osgb = st_transform(crashes_sf, 27700)

Exercises:

1. Try to subset the zones with the crashes_osgb. What does the error message say?

2. Create zones_osgb by transforming the zones object.

3. Bonus: Use st_crs() to find out the units measurement of the British National Grid.

For more information on CRSs see Chapter 6 of Geocompuation with R (Lovelace,

Nowosad, and Muenchow 2019).

Buffers

Buffers are polygons surrounding geometries, usually with fixed distance. For example, in

road safety research a 30m buffer can be created around crash locations to identify crashes

that happened in close proximity to a particular junction or road segment.

Exercises:

1. Find out and read the help page of sf’s buffer function.

2. Create an object called crashes_1km_buffer representing the area

within 1 km of the crashes_osgb object and plot the result using

the command: plot(crashes_1km_buffer). As a fun bonus, try:

mapview::mapview(crashes_1km_buffer).

3. Bonus: Try creating buffers on the geographic version of the crashes_sf object.

What happens?

7.6

7.7

63 64www.racfoundation.orgReproducible road safety research with R: A practical introduction

Attribute operations on sf objects

We can do non-spatial operations on sf objects because they are data.frames. Try the

following attribute operations on the zones data:

load example dataset if it doesn’t already exist
zones = pct::get_pct_zones("isle-of-wight")
sel = zones$all > 3000 # create a subsetting object
zones_large = zones[sel,] # subset areas with a population over 3,000

subset based on ‘equality’ query
zones_2 = zones[zones$geo_name == "Isle of Wight 002",]
zones_first_and_third_column = zones[c(1, 3)]
zones_just_all = zones["all"]

Exercises:

1. Practice the subsetting techniques you have learned on the sf data.frame

object zones:

• Create an object called zones_small, which contains only regions with less

than 3000 people in the all column.

• Create a selection object called sel_high_car which is TRUE for regions with

above median numbers of people who travel by car and FALSE otherwise.

• Create an object called zones_foot which contains only the foot attribute

from zones.

• Bonus 1: plot zones_foot using the function plot to show where walking is

a popular mode of travel to work.

• Bonus 2: building on your answers to previous questions, use filter() from

the dplyr package to subset small regions where car use is high.

2. Bonus: What is the population density of each region (Hint: you may need to use

the functions st_area(), as.numeric() and use the ‘all’ column)?

3. Bonus: Which zone has the highest percentage of people who cycle?

Mapping road crash data

So far we have used the plot() function to make maps. That’s fine for basic visualisation,

but for publication-quality maps we recommend using tmap. See Chapter 8 of

Geocomputation with R (Lovelace, Nowosad, and Muenchow 2019) for further explanation

and alternatives. After installation, load the package as follows:

library(tmap)
this sets the tmap mode to plotting as opposed to interactive
tmap_mode("plot")

tmap mode set to plotting

7.8

7.9

63 64www.racfoundation.orgReproducible road safety research with R: A practical introduction

Exercises:

1. Create the plots of the zones object using plot() and tm_shape() + tm_
polygons() functions (see Figure 7.4).

2. Create an interactive version of the tmap plot by setting tmap_mode("view") and

re-running the plotting commands.

3. Add an additional layer to the interactive map showing the location of crashes,

using marker and dot symbols.

4. Bonus: Change the default basemap (Hint: you may need to search in the

package documentation or online for the solution).

Figure 7.4: Illustration of the plot and tmap approaches for creating maps

all

bicycle

all
300 to 400
400 to 500
500 to 600
600 to 700
700 to 800
800 to 900
900 to 1,000

bicycle
0 to 10
10 to 20
20 to 30
30 to 40
40 to 50
50 to 60

Analysing point data

Based on the saying, “Don’t run before you can walk,” we’ve learned the vital foundations

of R before tackling a real dataset. Temporal and spatial attributes are key to road crash

data, hence the emphasis on lubridate and sf. Visualisation is central to understanding

data and influencing policy, which is where tmap comes in. With these solid foundations,

plus knowledge of how to ask for help (we recommend reading R’s internal help, asking

colleagues, searching the internet and creating new questions or comments on online

forums such as StackOverflow or GitHub and we suggest you follow this order of resources

to get help), you are ready to test the methods on some real data.

7.10

65 66www.racfoundation.orgReproducible road safety research with R: A practical introduction

Before doing so, take a read of the stats19 vignette, which can be launched as follows:

vignette(package = "stats19") # view all vignettes available on stats19
vignette("stats19") # view the introductory vignette

This should now be sufficient to tackle the following exercises:

1. Download and plot all crashes reported in Great Britain in 2018. (Hint: see the

stats19 vignette)

2. Find the function in the stats19 package that converts a data.frame object into

an sf data frame. Use this function to convert the road crashes into an sf object,

called crashes_sf, for example.

3. Filter crashes that happened in the Isle of Wight based on attribute data. (Hint: the

relevant column contains the word local)

4. Filter crashes happened in the Isle of Wight using geographic subsetting. (Hint:

remember st_crs()?)

5. Bonus: Which type of subsetting yielded more results and why?

6. Bonus: How many crashes happened in each zone?

7. Create a new column called month in the crash data using the function

lubridate::month() and the date column.

8. Create an object called a_zones_may representing all the crashes that happened

in the Isle of Wight in the month of May.

9. Bonus: Calculate the average (mean) speed limit associated with each crash that

happened in May across the zones of the Isle of Wight (the result is shown in the map).

Other mapping functions that can be powerful presentation tools are also explained in

Geocomputation With R (Lovelace, Nowosad, and Muenchow 2019). These include leaflet

maps, which have interactive properties and can be shared as .html files, and shiny apps

that give even more interactivity as well as the possibility to embed on websites.

Analysing crash data on road networks

Road network data can be accessed from a range of sources, including OpenStreetMap

(OSM) and Ordnance Survey. We will use some OSM data from the Isle of Wight, which can

be loaded as follows:

u = "https://github.com/ropensci/stats19/releases/download/1.1.0/roads_
key.Rds"
roads_wgs = readRDS(url(u))
roads = roads_wgs %>% st_transform(crs = 27700)

7.11

https://docs.ropensci.org/stats19/articles/stats19.html

65 66www.racfoundation.orgReproducible road safety research with R: A practical introduction

You should already have road crashes for the Isle of Wight from the previous stage. If not,

load crash data as follows:

u = "https://github.com/ropensci/stats19/releases/download/1.1.0/car_
accidents_2017_iow.Rds"
crashes_iow = readRDS(url(u))

1. Plot the roads with the crashes overlaid.

2. Create a buffer around the roads with a distance of 200m.

3. How many crashes fall outside the buffered roads?

4. Bonus: Use the aggregate() function to identify how many crashes happened

per segment and plot the result with tmap and plot the crashes that happened

outside the road buffers on top, as shown in Figure 7.5 (hint: see ?aggregate.sf

and take a read of Section 4.2.5 of Geocomputation with R (Lovelace, Nowosad,

and Muenchow 2019)). Try undertaking the same steps for a different region of

your choice. An example for Essex is shown in the code chunk, which results in

Figure 7.6, (thanks to Will Cubbin).17

67 68www.racfoundation.orgReproducible road safety research with R: A practical introduction

Figure 7.5: Maps of the Isle of Wight.

67 68www.racfoundation.orgReproducible road safety research with R: A practical introduction

install github package for osm data
remotes::install_github("itsleeds/osmextract")
library(osmextract)
"essex" can be changed to another area name as required
region_name = "essex"
osm_data = oe_get(region_name, extra_tags = c("maxspeed", "ref"))
table(osm_data$highway)
filter osm_data to show only major roads
roads = osm_data %>%
 filter(str_detect(highway, pattern = "moto|prim|seco|tert|trunk"))
transform geometry and save
converts to projected BNG system for later use
roads = st_transform(roads, 27700)
plot(roads$geometry) # basic plot of roads
tm_shape(roads) + tm_lines("maxspeed", showNA = T, lwd = 2)
saveRDS(roads, file = "roads.Rds") # Saves road dataset for future use

Figure 7.6: Roads in Essex downloaded with the code shown above

69 70www.racfoundation.orgReproducible road safety research with R: A practical introduction

Bonus exercises

1. Identify a region and zonal units of interest from http://geoportal.statistics.gov.uk/

or from the object police_boundaries in the stats19 package.

2. Read them into R as an sf object.

3. Create a map showing the number of crashes in each zone.

4. Identify the average speed limit associated with crashes in each zone.

5. Identify an interesting question you can ask to the data and use exploratory data

analysis to find answers.

6. Check another related project for further information on smoothing techniques of

counts on a linear network.

http://geoportal.statistics.gov.uk/
https://github.com/agila5/leeds_seminar

69 70www.racfoundation.orgReproducible road safety research with R: A practical introduction

8. Joining road crash
tables
STATS19 tables

Thus far, we have been working primarily with ‘accident’ level data, but there is much useful

data in other tables. As outlined in the stats19 vignette — which you can view by entering

the command vignette("stats19") to get extended help pages about R packages —

there are three main tables that contain STATS19 data.

Let’s read-in data from 2019 to take a look:

library(stats19)
ac = get_stats19(year = 2019, type = "accidents")
ca = get_stats19(year = 2019, type = "casualties")
ve = get_stats19(year = 2019, type = "vehicles")

The three objects read-in above correspond to the main types of entity that are recorded by

the police:

• Crashes: The ‘crash event’ table contains general data about crashes, including

where and when they happened and the conditions in which the crash occurred

(e.g. light levels in the column light_conditions in the ac object). For historical

reasons, crash level data is stored in tables called ‘Accidents’ (a term that has

fallen out of favour because it implies that nobody was at fault). See names for all

33 variables in the crashes table by running the command names(ac). Crashes

range from collisions involving only one vehicle and another entity (e.g. a person on

foot, bicycle or a car) causing only ‘slight’ injuries such as a graze, to multi-vehicle

pile-ups involving multiple deaths and dozens of slight and serious injuries.

• Casualties: The casualties table, assigned to an object called ca in the code

above, contains data at the casualty level. As you will see by running the command

names(ca), the STATS19 casualties table has 16 variables including age_of_
casualty, casualty_severity and casualty_type, reporting the mode of

transport in which the person was travelling when they were hit.

• Vehicles: The vehicles table, assigned to ve above, contains information about

the vehicles and their drivers involved in each collision. As you will see by running

the command names(ve), the 23 variables in this table includes vehicle_type,
hit_object_off_carriageway and first_point_of_impact. Information about

the driver of vehicles involved is contained in variables such as age_of_driver,
engine_capacity_cc and age_of_vehicle.

8.1

71 72www.racfoundation.orgReproducible road safety research with R: A practical introduction

Each table represents the same phenomena: road casualties in Great Britain in 2019.

Therefore, you may expect they would have the same number of rows, but this is not the case:

nrow(ac)

[1] 117536

nrow(ca)

[1] 153158

nrow(ve)

[1] 216381

The reason for this is that there are, on average, more than one casualty per crash

(e.g. when a car hits two people), and more than one vehicle, including bicycles, per crash18

We can find the average number of casualties and vehicles per crash as follows:

nrow(ca) / nrow(ac)

[1] 1.303073

nrow(ve) / nrow(ac)

[1] 1.840976

The output of the commands above show that there are around 1.3 casualties and 1.8

vehicles involved in each crash record in the STATS19 dataset for 2019. Each table contains

a different number of columns, reporting the characteristics of each casualty and each

driver/vehicle for the ca and ve datasets respectively.

ncol(ac)

[1] 33

ncol(ca)

[1] 16

ncol(ve)

[1] 23

71 72www.racfoundation.orgReproducible road safety research with R: A practical introduction

The output of the previous code chunk shows that we have more variables in the ‘accidents’

table than the others but the others, but the other tables are data rich with 16 columns on

the casualties and 23 on the vehicles. To check that the datasets are consistent, we can

check that the number of casualties reported in the crashes table is equal to the number of

rows in the casualties table, and the same for the vehicles table:

sum(ac$number_of_casualties) == nrow(ca)

[1] TRUE

sum(ac$number_of_vehicles) == nrow(ve)

[1] TRUE

Joining casualty data

To join casualty (or vehicle) data onto the ac object above, the inner_join() function from

dplyr can be used as follows:

ac_cas_joined = inner_join(ac, ca)

Joining, by = "accident_index"

8.2

73 74www.racfoundation.orgReproducible road safety research with R: A practical introduction

The above command worked because the two datasets have a shared variable name:

accident_index. Note that the command worked by duplicating accident records for

multiple casualties. We can see this finding the accident that had the most crashes and

printing the results in the ac and new joined dataset, as follows:

id_with_most_crashes = ac %>%
 top_n(n = 1, wt = number_of_casualties) %>%
 pull(accident_index)
id_with_most_crashes

[1] "2019500885809"

ac %>% filter(accident_index == id_with_most_crashes) %>%
 select(accident_index, accident_severity, number_of_vehicles,
number_of_casualties)

A tibble: 1 x 4
accident_index accident_severity number_of_vehicles
number_of_casualties

<chr> <chr> <int> <int>
1 2019500885809 Serious 1 52

ac_cas_joined %>% filter(accident_index == id_with_most_crashes) %>%
 select(accident_index, accident_severity, number_of_vehicles,
number_of_casualties, casualty_reference)

A tibble: 52 x 5
accident_index accident_severi… number_of_vehic… number_of_casua…
<chr> <chr> <int> <int>
1 2019500885809 Serious 1 52
2 2019500885809 Serious 1 52
3 2019500885809 Serious 1 52
4 2019500885809 Serious 1 52
5 2019500885809 Serious 1 52
6 2019500885809 Serious 1 52
7 2019500885809 Serious 1 52
8 2019500885809 Serious 1 52
9 2019500885809 Serious 1 52
10 2019500885809 Serious 1 52
… with 42 more rows, and 1 more variable: casualty_reference <int>

73 74www.racfoundation.orgReproducible road safety research with R: A practical introduction

Joining vehicle data

The same approach can be used to join vehicle data onto the crash record data:

ac_veh_joined = inner_join(ac, ve)

Joining, by = "accident_index"

This information can be used as the basis of who-hit-who visualisation, in this case

looking at vehicles involved in the most common type of casualties (recoded using the

trafficalmr package):

remotes::install_github("saferactive/trafficalmr")
library(trafficalmr)
ac_cas_joined$cas_type =
 tc_recode_casualties(ac_cas_joined$casualty_type)
p = c(`HGV_occupant|Minibus_occupant|Taxi_occupant|Moto*.+` = "Other")
ac_cas_joined$cas_type = tc_recode_casualties(ac_cas_joined$cas_type,
 pattern = p)
barplot(table(ac_cas_joined$cas_type))

Figure 8.1: Barplot of recoded casualty type frequencies

Car_occupant Cyclist Other Pedestrian

0
20

00
0

40
00

0
60

00
0

80
00

0
8.3

75 76www.racfoundation.orgReproducible road safety research with R: A practical introduction

To find the largest vehicle involved in each casualty, we can similarly pre-process the vehicle

data as follows:

p = c(`Van*.+` = "Van", `Pedal cycle` = "Bicycle",
 `(M|m)otorcycle*.+|Elec*.+` = "Motorcycle",
 `Taxi*|Data*.+|Agri*.+|Ridden*.+|Mobility*.+|Tram*.+|(M|m)
 otorcycle*.+|Elec*.+` = "Other",
 `Bus*.+` = "Bus", `Bus|Minibus*.+|Other*.+` = "Other", `Goods*.+` =
 "HGV")
ac_veh_joined$veh_type =
(ac_veh_joined$vehicle_type, p)
 tc_recode_vehicle_type
dput(unique(ac_veh_joined$veh_type))
l = c("Bicycle", "Car", "Other", "Van", "HGV")
ac_veh_joined$vehicle = factor(ac_veh_joined$veh_type, levels = l,
 ordered = TRUE)
summary(ac_veh_joined$vehicle)

Bicycle Car Other Van HGV
17437 152686 28450 12579 5229

ac_veh_largest = ac_veh_joined %>%
 group_by(accident_index) %>%
 summarise(largest_vehicle = max(vehicle))

`summarise()` ungrouping output (override with `.groups` argument)

ac_cas_veh_largest = inner_join(ac_cas_joined, ac_veh_largest)

Joining, by = "accident_index"

cas_veh_table = table(ac_cas_veh_largest$cas_type,
 ac_cas_veh_largest$largest_vehicle)
cvt_df = as.data.frame(cas_veh_table)
ggplot(cvt_df) +
 geom_bar(aes(Var2, Freq, fill = Var1), stat = "identity") +
 scale_fill_discrete("Casualty type") +
 xlab("Largest vehicle involved") +
 ylab("Number of casualties")

75 76www.racfoundation.orgReproducible road safety research with R: A practical introduction

Figure 8.2: ‘Who hit who’ visualisation of number of casualties (y axis) hurt in

crashes involving different vehicle types (largest vehicle in each crash on Y axis)

0

25000

50000

75000

100000

Bicycle Car Other Van HGV
Largest vehicle involved

N
um

be
r o

f c
as

ua
lti

es Casualty type
Car_occupant

Cyclist

Other

Pedestrian

geom_bar(aes(`Vehicle type`, `Casualty type`, fill = `N. crashes`),
stat = "identity")

77 78www.racfoundation.orgReproducible road safety research with R: A practical introduction

Case study: London

The three main tables we have just read-in can be joined by the accident_index variable

and then filtered using other variables. This is demonstrated in the code chunk below, which

subsets all casualties that took place in London, and counts the number of casualties by

severity for each crash:

library(tidyr)
library(dplyr)
ac_sf = format_sf(ac)
table(ac_sf$police_force)
lnd_police = c("City of London", "Metropolitan Police")
ac_lnd = ac_sf %>%
 filter(police_force %in% lnd_police)
ca_lnd = ca %>%
 filter(accident_index %in% ac_lnd$accident_index)
cas_types = ca_lnd %>%
 select(accident_index, casualty_type) %>%
 group_by(accident_index) %>%
 summarise(
 Total = n(),
 walking = sum(casualty_type == "Pedestrian"),
 cycling = sum(casualty_type == "Cyclist"),
 passenger = sum(casualty_type == "Car occupant")
)
cj = left_join(ac_lnd, cas_types)

What just happened? We found the subset of casualties that took place in London

with reference to the accident_index variable. Then we used the dplyr function,

summarise(), to find the number of people who were in a car, cycling, and walking when

they were injured. This new casualty dataset is joined onto the crashes_lnd dataset. The

result is a spatial (sf) data frame of ac in London, with columns counting how many road

users of different types were hurt. The joined data has additional variables:

base::setdiff(names(cj), names(ac_lnd))

[1] "Total" "walking" "cycling" "passenger"

8.4

77 78www.racfoundation.orgReproducible road safety research with R: A practical introduction

As a simple spatial plot, we can map all crashes that occurred in London in 2017, with the

colour related to the total number of people hurt in each crash. Placing this plot next to a

map of London provides context:

plot(
 cj[cj$cycling > 0, "speed_limit",],
 cex = cj$Total[cj$cycling > 0] / 3,
 main = "Speed limit (cycling)"
)
plot(
 cj[cj$passenger > 0, "speed_limit",],
 cex = cj$Total[cj$passenger > 0] / 3,
 main = "Speed limit (passenger)"
)

79 80www.racfoundation.orgReproducible road safety research with R: A practical introduction

79 80www.racfoundation.orgReproducible road safety research with R: A practical introduction

The spatial distribution of crashes in London clearly relates to the region’s geography. Car

crashes tend to happen on fast roads, including busy dual carriageway roads, displayed in

yellow in Figure 8.2 above. Cycling is as an urban activity, and the most bike crashes can

be found in or near the centre of London, which has a comparatively high level of cycling

(compared to the low baseline of 3%). This can be seen by comparing the previous map

(Figure 8.1) with an overview of the area, from an academic paper on the social, spatial and

temporal distribution of bike crashes (Lovelace, Roberts, and Kellar 2016).

In addition to the Total number of people hurt/killed, cj contains a column for each type of

casualty (cyclist, car occupant, etc.), and a number corresponding to casualties in crashes

involving each type of vehicle. It also contains the geometry column from ac_sf. In other

words, joins allow the casualties and vehicles tables to be geo-referenced. We can then

explore the spatial distribution of different casualty types. For example, Figure 8.3 shows the

spatial distribution of pedestrians and car passengers hurt in car crashes across London in

2017, via the following code:

library(ggplot2)
ac_types = cj %>%
 filter(accident_severity != "Slight") %>%
 mutate(type = case_when(
 walking > 0 ~ "Walking",
 cycling > 0 ~ "Cycling",
 passenger > 0 ~ "Passenger",
 TRUE ~ "Other"
))
ggplot(ac_types, aes(size = Total, colour = speed_limit)) +
 geom_sf(show.legend = "point", alpha = 0.3) +
 facet_grid(vars(type), vars(accident_severity)) +
 scale_size(
 breaks = c(1:3, 12),
 labels = c(1:2, "3+", 12)
) +
 scale_color_gradientn(colours = c("blue", "yellow", "red")) +
 theme(axis.text = element_blank(), axis.ticks = element_blank())

81 82www.racfoundation.orgReproducible road safety research with R: A practical introduction

Figure 8.3: Spatial distribution of serious and fatal crashes in London, for cycling,

walking, being a car passenger and other modes of travel. Colour is related to the

speed limit where the crash happened (red is faster) and size is proportional to the

total number of people hurt in each crash.

Exercises:

1. There is a lot going on in the code in this chapter, the most advanced of the guide.

With reference to online help, work through the code line-by-line and look-up any

aspects of the code that you do not fully understand to help figure out what is

going on.

2. Reproduce the final figures for a different city of your choice (not London).

3. Bonus: Create more attractive interactive maps to show the spatial distribution of

different casualty types in the city of your choice.

81 82www.racfoundation.orgReproducible road safety research with R: A practical introduction

9. Next steps
You have reached the end of this short guide on reproducible road safety research with R.

Armed with the knowledge of what R and RStudio can do, and how add-on packages provide

powerful tools for a wide range of data analysis, visualisation and statistical modelling tasks,

you should have a much better understanding of the language’s capabilities.

I hope that in the process of working through the exercises, you have learned not only the

technicalities of data science with a powerful tool of the trade, but also a way of working that

puts reproducibility centre stage. Learning any new skill takes time and effort. However, in

my experience, once you get past a critical threshold, the amount of time saved using the

new approach starts to outweigh the amount of time involved in becoming fluent. The same

concept applies to other ‘tools of the trade’ that are available, such as the open source

geographic information system (GIS) software, QGIS and other languages for data science,

such as Python and Julia.

Rather than go off and learn such additional tools, we encourage you to stick with R. It is

preferable to know one language in-depth before branching out to learn other approaches. It

is preferable to know one language in-depth and then branch out to learn other approaches

than to learn many approaches superficially or, as Grolemund and Wickham (2016) put it in

the excellent R for Data Science (R4DS) book: “You will get better faster if you dive deep,

rather than spreading yourself thinly over many topics.” In terms of next steps, you cannot

go wrong with checking-out the R4DS website which, like this book, has worked examples

and exercises in abundance on a much wider range of data science topics. As you will see

by visiting r4ds.had.co.nz many of these topics, including workflow and modelling, will be of

use from a road safety research perspective.

A strength of R is its flexibility. It can be used as a calculator one minute and a statistical

modelling toolbox the next. R can be used as a web application development framework the

next, as illustrated by major shiny apps such as the Propensity to Cycle Tool (try it at www.pct.

bike) and tools developed by road safety consultancy Agilysis, described in Section 9.4 below.

Indeed, within the R ecosystem there are many sub-ecosystems, each of which has excellence

free and open resources for people who want to learn more in a particular domain. If you are

particularly in the geographic analysis of road crash data, the book Geocomputation with R

by yours truly and which has already been mentioned in Chapter 7, is highly recommended

(Lovelace, Nowosad, and Muenchow 2019). If you are looking for methods of analysing

trends and forecasting with time series data, Hyndman and Athanasopoulos (2018) is highly

recommended. Indeed, there is a whole library’s worth of open resources to be found on any

area of data-driven research online, from web development and visualisation to text analysis.

A recommended next step for learning more in regards to any of these areas is the website

bookdown.org, which links to books that can also be bought as physical items if you, like many

people, prefer learning with a paper resource.

https://r4ds.had.co.nz
www.pct.bike
www.pct.bike
https://geocompr.robinlovelace.net

83 84www.racfoundation.orgReproducible road safety research with R: A practical introduction

In fact, with the size and rapidly evolving nature of the R ecosystem, one of the hardest

things for a beginner is knowing which packages, functions or workflow options to choose

from out of a wide array of options. The internet is there to help you, but it can also hinder

your progress by serving-up out-of-date solutions and providing ‘quick fixes’ at the expense

of a deep understanding. Therefore, instead of trying to be comprehensive (focussed web

searches prioritising tried-and-tested solutions documented in authoritative sources can help

with that), the rest of this final section provides pointers on a few particularly useful aspects

of R from a road safety analysis perspective. Most people who learn R (or any computer

language) will at become frustrated due to tricky-to-fix error messages. As outlined in

Section 9.4, written by people who have navigated R’s at first daunting learning curve, it

can take only a few weeks of learning to get to the point where saves more time than it

consumes and takes your work “to the next level.”

Automated reporting with RMarkdown

An advantage of R is that it has many packages dedicated to the communication and

publication of results, vital for policy impact. Perhaps the most important important package

with regards to the communication of results is rmarkdown. This is more of a framework

than a package, providing a powerful system for generating reports, web pages and even

books (this book was written with the bookdown package, which builds on rmarkdown).

Here is not the place to explain how to use RMarkdown and their associated .Rmd files. The

framework is explained in detail in a free and open book (Xie, Allaire, and Grolemund 2018).

To get started with the framework, however, you can try the following code example, which

shows the creation of an Rmd file:

file.edit("test-document.Rmd")

Try adding some code chunks and text by following the guidance in the Rmd cheatsheet,

which you can get from the Help > Cheatsheets menu in RStudio.

Sharing code

Another way to increase the impact of your code is to share it. This can help collaborate

with colleagues, getting feedback from others, and generating interest in your work as part

of collaborative research processes that have been in operation for hundreds of years,

as summarised by the phrase, ‘Building on the shoulders of giants.’ A more prosaic, but

perhaps more important, corollary to that is, ‘Do not reinvent the wheel.’ By getting your

code ‘out there’ you will be able to ensure that others can use your code and, because

publishing your code encourages searching for other code bases, help you to find

components written by others to improve your work. Sharing code can therefore save many

hours of time, provided you are happy to read and re-use, and of course give due credit and

reference to code and ideas from other people.

9.1

9.2

83 84www.racfoundation.orgReproducible road safety research with R: A practical introduction

The easiest way to share code in 2020 (and likely for the foreseeable future) is GitHub,

an online code sharing, project management and file hosting platform. A great way to get

started with GitHub, after you have signed up and created a user name at github.com, is to

contribute to an existing project. Challenge: suggest a change to the code repository on

GitHub that contains the source code of this book.

Asking questions

A final thing to say on R before the testimonials below is how to ask questions. There are

many places to ask for help online, including:

• The question and answer site https://stackoverflow.com/. You will get quick

answers here but be warned, answers may not always be particularly friendly if you

ask a question that doesn’t make sense or which has already been answered in

the documentation–that should not put you off though, sometimes it’s a case of,

‘Don’t ask, don’t get.’

• The https://community.rstudio.com/ forum, where you may get more detailed

and friendlier responses, especially if the question relates to RStudio, although the

answer may be slower.

• Special interest groups such as https://gis.stackexchange.com/ (for GIS related

questions), and the Slack group RSGB Analyst Network for road safety data

analysis questions

Perhaps better than all of the above, is to ask a colleague who has slightly more experience

than you. That way you will build ‘collaboration networks.’ The final thing to say on asking

questions is ‘use reprex!’ To see what I mean by this try typing the following:

example of creating a good reprex:
reprex::reprex({
 x = 1
 y = "2"
 # why does this fail?
 x + y
 # but this succeeds?
 x + as.numeric(y)
})
after running the code above you can share the copied output to help
ask questions

Note, you can turn any bit of code into a ‘reprex’ by selecting it and by running the ‘Reprex

selection’ addin in RStudio, as described on the Tidyverse website.

9.3

https://stackoverflow.com
https://community.rstudio.com/
https://gis.stackexchange.com/
https://www.tidyverse.org/help/

85 86www.racfoundation.orgReproducible road safety research with R: A practical introduction

Testimonials

This final section provides insight not only into how R can be used for road safety research

from a range of perspectives, but also navigating R’s at times steep learning curve.

9.4.1 R for professional road safety analysts

Will Cubbin, Road Safety Strategy Analyst, Safer Essex Roads Partnership

When I attended the two-day course ‘introduction to R’ I had little confidence in my natural

ability to learn coding. Although familiar with many functions in Excel and having dabbled in

VBA, my two previous attempts at any kind of computer language both ended in literal failure.

At university I failed a module on C++ and in a previous job I failed a training course on SQL!

As expected the course was a steep learning curve but after two days I had definitely

learned a few tricks. However I was still concerned about the amount of material covered by

the course that I hadn’t understood. It turned out this was actually a good thing because the

breadth of the course showed me what R was capable of, and how it could be useful. The

next part of my journey with R was to use the course materials and build on the basics I had

learned, to achieve what the course showed was possible.

I began with the aim of using the geospatial analysis capability in R to visualise collision

data in new ways, to give more detailed insight and present it in a way that would inform

meaningful action for front line resources. Having a clear goal of “This is what I want to

achieve with my first R project” was crucial. The course had given me an idea of the sort

of processes I needed to undertake in order to achieve this goal. The post-course support

through GitHub was very good, I also learned a lot by finding examples of code on places

like GitHub and stackoverflow through Google searches. The other crucial element in getting

my first success with R was having time dedicated to working on the project immediately

after the course. I spent two weeks working almost exclusively on this project, starting the

week after the R course.

The result was well worth the effort. After the initial two weeks of intensive learning with R, I spent

4 to 6 weeks working on the project a couple of days per week. By the end of this period I

had working versions of two interactive mapping tools, comprising: 1) A multi layered leaflet

map showing collision locations, collision density along main roads and a “heatmap” (Kernel

Density Estimation raster) layer. I made multiple versions of each layer for different modes of

transport and behaviours such as drink driving. 2) A ‘shiny’ mapping app showing collision

locations and basic details with date filter. I was able to embed this on our website for public use.

It can be viewed here SERP website data page under the heading ‘Interactive Map.’

I soon added a second R script to the first of the two projects described above. This script

produced and exported a range of standardised infographics showing various breakdowns

of the data contained in the map. This allowed me to almost fully-automate the process

for updating a proactive Roads-Policing tasking document. It turned this monthly process,

which previously took 1 working day to complete, into one taking just 45 minutes. It also

added more useful insight to the monthly tasking product.

9.4

https://saferessexroads.org
https://saferessexroads.org/collision-data/

85 86www.racfoundation.orgReproducible road safety research with R: A practical introduction

My next steps are to continue another project using an API to access vehicle telematics

data. This project extracts driving events, such as harsh braking and harsh cornering, and

plots them on an interactive map. I will also be using R for some statistical analysis as part

of a research project I have recently started. Thinking of myself as an “Excel native,” I would

say R hasn’t replaced Excel, but has been a powerful addition to my toolbox so I can do

more interesting and in-depth work than ever before.

9.4.2 R in a road safety research consultancy

Dr Craig Smith, Data Scientist, Agilysis Ltd

After attending my first R course, I immediately saw how useful the language could be to

our team. At Agilysis, we have integrated R into almost everything our analytics team does,

pushing for our work to be as robust and reproducible as possible. The incredible integration

R has with SQL database engines, cloud-based infrastructure like AWS, and proprietary

GIS software like ArcGIS, has given us a huge scope to automate a lot of our regular data

processing tasks. The added ability to automate the production of reports, charts and maps

has allowed us to gain quick insights into our data, speeding up our exploratory analysis.

The huge Shiny ecosystem has allowed us to produce interactive applications for sharing our

tools and visualisations with stakeholders. There is also a wide range of open-source statistical

and machine learning packages available which, when combined with the added capability

to translate and use tools from python, has allowed us to innovate and take full advantage

of what artificial intelligence has to offer. All of this, embedded in a supportive community of

R users that is continually sharing its knowledge and helping spread these skills, means that

anything is possible for users, whatever their level of experience. The fact that this community

includes a growing number of road safety analysts and transport-focused data scientists

(thanks, in part, to this book and the previous R for Road Safety courses) means that there are

plenty of like-minded R users all over the country that you can share ideas (and code) with.

9.4.3 Using R in a road safety charity

Emily Nagler, Data Analyst, RAC Foundation

I was first introduced to R in my master’s program by a professor who was very enthusiastic

as to how much better it was than ArcGIS for spatial analysis. Whilst he did project his views

very strongly on us as students, I still tended towards ArcGIS when given a choice between

the two. I had never written code before this point, and to me the GUI of ArcGIS was simply

easier to work with. However, over the course of my program I incorporated R more and

more as our coursework became increasingly complex. Datasets with tens of thousands of

rows quickly became a pain in Excel, and the inefficiency of working between two programs

rather than one was tedious. Like many of my classmates, I soon realised the point our

professor had been trying to make all along: in order to push your analytical capabilities to

the next level you need to use the right tool. I can agree that there is a steep learning curve

to R, but once you’ve become comfortable with the language, it’s harder to go back than it

is to go forward. Meaning, once you reach a point in your proficiency, it’s easier to build on

your skills and knowledge of the language than it is to revert back to Excel knowing there is

a smarter alternative.

https://agilysis.co.uk
https://agilysis.co.uk
http://www.racfoundation.org

87 88www.racfoundation.orgReproducible road safety research with R: A practical introduction

I found myself face to face with R again in my role at the RAC Foundation a year later,

and since I’d already become an R convert, it was easy to pick up again. However, now I

saw new benefits from a different perspective, relating to collaboration and reproducibility.

Before this point, the only eyes on my scripts were my own, and there was no need to

refer back to them once an assignment was done. However, in my role as a data analyst,

it is important and necessary to create something that can be shared and understood by

others. The ability to have a full account written out line by line makes it much easier to work

off someone else’s code and, importantly, to quality check one another’s work. By having

traceable, repeatable analysis, there is a level of accountability with the method that you

simply cannot get in Excel.

Another great aspect of R is the helpful online community presence, thanks to its open

source nature. Anyone can access the software, and anyone can contribute to the

discussion, which I often find more helpful than the FAQs of a paid for software. I would say

that this aspect alone has helped hugely in my work, both academically and professionally.

I’m never far from an answer when stuck, no matter how specific the problem gets. In terms

of its use in my work on road safety and transport analysis it has become a great tool for

combining data with maps, something that I think highlights results in a more insightful way.

That being said, visualisation is just as important as the analysis, and I’ve been pleased

with the array of packages that can create eye-catching maps, interactive dashboards, and

much more outside of the traditional data wrangling capabilities. Looking to the future of my

career I see myself continuing to use R and I’m confident that its capabilities will only get

better the more people engage with it.

9.4.4 Using R in other areas of road safety research

Do you have a use case of reproducible research? Please get in touch on the issue tracker.

87 88www.racfoundation.orgReproducible road safety research with R: A practical introduction

10. rrsrr
To reproduce the contents of the book, download the source code from GitHub, open the

file RStudio project file rrsrr.Rproj and run the following commands:

install.packages("remotes")
remotes::install_github("itsleeds/rrsrr")
install.packages("servr")
bookdown::serve_book()

89 90www.racfoundation.orgReproducible road safety research with R: A practical introduction

References
Austin, Kevin, Miles Tight, and Howard Kirby. 1997. “The Use of Geographical Information

Systems to Enhance Road Safety Analysis.” Transportation Planning and Technology 20 (3):

249–66.

Baath, Rasmus. 2012. “The State of Naming Conventions in R.” The R Journal 4 (2): 74–75.

Bryan, Jennifer, Jim Hester, David Robinson, and Hadley Wickham. 2019. Reprex: Prepare

Reproducible Example Code via the Clipboard.

Dowle, Matt, and Arun Srinivasan. 2019. Data.table: Extension of ‘data.frame‘.

Gentleman, Robert, and Duncan Temple Lang. 2007. “Statistical Analyses and Reproducible

Research.” Journal of Computational and Graphical Statistics 16 (1): 1–23. https://doi.

org/10.1198/106186007X178663.

Grolemund, Garrett, and Hadley Wickham. 2016. R for Data Science. 1 edition. O’Reilly

Media.

Hyndman, Rob J., and George Athanasopoulos. 2018. Forecasting: Principles and Practice.

S.l.: OTexts.

Ihaka, Ross, Ross Ihaka Gentleman, and Robert. 1996. “R: A Language for Data Analysis

and Graphics.” Journal of Computational and Graphical Statistics 5 (3): 299–314. https://

doi.org/10.2307/1390807.

Lovelace, Robin, Malcolm Morgan, Layik Hama, Mark Padgham, and M Padgham. 2019.

“Stats19 A Package for Working with Open Road Crash Data.” Journal of Open Source

Software 4 (33): 1181. https://doi.org/10.21105/joss.01181.

Lovelace, Robin, Jakub Nowosad, and Jannes Muenchow. 2019. Geocomputation with R.

CRC Press.

Lovelace, Robin, John Parkin, and Tom Cohen. 2020. “Open Access Transport Models: A

Leverage Point in Sustainable Transport Planning.” Transport Policy 97 (October): 47–54.

https://doi.org/10.1016/j.tranpol.2020.06.015.

Lovelace, Robin, Hannah Roberts, and Ian Kellar. 2016. “Who, Where, When: The

Demographic and Geographic Distribution of Bicycle Crashes in West Yorkshire.”

Transportation Research Part F: Traffic Psychology and Behaviour, Bicycling and bicycle

safety, 41, Part B. https://doi.org/10.1016/j.trf.2015.02.010.

Peng, Roger D., Francesca Dominici, and Scott L. Zeger. 2006. “Reproducible

Epidemiologic Research.” American Journal of Epidemiology 163 (9): 783–89. https://doi.

org/10.1093/aje/kwj093.

Popper, Karl. 1934. The Logic of Scientific Discovery. Hutchinson.

https://doi.org/10.1198/106186007X178663
https://doi.org/10.1198/106186007X178663
https://doi.org/10.2307/1390807
https://doi.org/10.2307/1390807
https://doi.org/10.21105/joss.01181
https://doi.org/10.1016/j.tranpol.2020.06.015
https://doi.org/10.1016/j.trf.2015.02.010
https://doi.org/10.1093/aje/kwj093
https://doi.org/10.1093/aje/kwj093

89 90www.racfoundation.orgReproducible road safety research with R: A practical introduction

R Core Team. 2020a. “R: A Language and Environment for Statistical Computing.” Vienna,

Austria: R Foundation for Statistical Computing.

———. 2020b. R: A Language and Environment for Statistical Computing. Vienna, Austria:

R Foundation for Statistical Computing.

Wickham, Hadley. 2014. Advanced R. CRC Press.

———. 2016. Ggplot2: Elegant Graphics for Data Analysis. 2nd ed. 2016 edition. New York,

NY: Springer.

———. 2020. Mastering Shiny.

World Health Organization. 2018. Global Status Report On Road Safety 2018. S.l.

Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018. R Markdown: The Definitive Guide. 1

edition. Boca Raton: Chapman and Hall/CRC.

Mobility • Safety • Economy • Environment

The Royal Automobile Club Foundation for Motoring Ltd is a transport policy

and research organisation which explores the economic, mobility, safety and

environmental issues relating to roads and their users. The Foundation publishes

independent and authoritative research with which it promotes informed debate

and advocates policy in the interest of the responsible motorist.

RAC Foundation

89–91 Pall Mall

London

SW1Y 5HS

Tel no: 020 7747 3445

www.racfoundation.org

Registered Charity No. 1002705

December 2020 © Copyright Royal Automobile Club Foundation for Motoring Ltd

Designed and printed by
The Javelin Partnership Ltd

Tel: 0118 907 3494

Produced on paper from a managed
sustainable source which is FSC certified

as containing 50% recycled waste.

www.racfoundation.org

