Q1) What proportion of the UK’s greenhouse gas emissions come from transport?
Q2) Are road traffic emissions forecast to fall?
Q3) What are the future limits for CO2 emissions for new cars?
Q4) What is the Worldwide Harmonised Light Vehicle Test Procedure (WLTP)?
Q5) How much CO2 does the average new UK car produce ?
Q6) What are the average CO2 emissions of new cars by fuel type?
Q7) What is the proportion of the new car market by fuel type?
Q8) Is the number of diesel cars in Great Britain falling?
Q9) Is the sale of new petrol and diesel cars and vans to be banned in the future?
Q10) What are alternatively-fuelled vehicles?
Q12) How many cars are powered by petrol, diesel and alternative fuels?
Q14) What are the most popular plug-in vehicles on the UK roads?
Q15) How many public electric vehicle charging devices are available in the UK?
Q16) Is there an even regional distribution of charging devices?
Q17) Where can I find information on the availability of electric vehicle charge points?
Q18) How do you identify cars with the lowest CO2 emissions?
Q19) How can I cut my vehicle’s fuel consumption - and hence CO2 emissions - when driving my car?
Q20) Can the UK’s climate change goals be achieved without drivers travelling less overall?
Q21) How is the vehicle tax rate for a car assessed?
Q22) How many licensed cars in Great Britain are in each CO2 emission band?
Q23) What about local air pollutants?
Q24) What can be done to reduce or mitigate the impact of local air pollution?
Q26) What is the Ultra Low Emission Zone that operates in London?
Q28) Are any other cities introducing Clean Air Zones?
Q29) How can I check if I will be charged to drive in a Clean Air Zone?
Q30) How much petrol and diesel is sold each year?
Q31) When was E10 petrol introduced in the UK and will my car be able to run on it?
Q32) What is the UK’s average new car fuel consumption?
Q33) Are the manufacturers' official fuel economy figures accurate?
Q34) How can I check a vehicle’s average fuel consumption?
Q35) How many front gardens have been concreted over to provide parking for cars?
Q1) What proportion of the UK’s greenhouse gas emissions come from transport?
A1) The coronavirus (COVID-19) pandemic and the resulting restrictions introduced across the UK in 2020 and 2021 has had a significant impact on greenhouse gas emissions. In 2021, net territorial greenhouse gas emissions in the UK were estimated to be 426.5 million tonnes carbon dioxide equivalent (MtCO2e), an increase of 5.0 per cent from the 2020 figure of 406.3 million tonnes, but still 5.3 per cent lower than in 2019, the most recent pre-pandemic year. Total greenhouse gas emissions were 47.6 per cent lower than they were in 1990. Carbon dioxide made up 80 per cent of the 2021 total.
The transport sector consists of emissions from road transport, railways, domestic aviation, shipping, fishing, and aircraft support vehicles. It is estimated to have been responsible for around 26 per cent of greenhouse gas emissions in the UK in 2021, almost entirely through carbon dioxide emissions. The main source of emissions from this sector is the use of petrol and diesel in road transport.
In 2020 transport was significantly impacted by COVID-19, as people were instructed to stay at home as much as possible. In 2021, COVID-19 restrictions were eased and people were able to travel more freely, resulting in an increase in greenhouse gas emissions from transport of 10 per cent to 109.5 MtCO2e in 2021, although this was still 11 per cent lower than in 2019, the last full year before the pandemic. For most of the period since 1990 the transport sector was the second most emitting sector; however, reductions over time in what was the largest sector (energy supply) mean that since 2016 transport has been the sector with the highest emissions and remains so in 2021, despite the lower level of emissions in the last two years.
Before 2020 there had been relatively little overall change in the level of greenhouse gas emissions from the transport sector over the previous three decades, with emissions only 4 per cent lower in 2019 than they were in 1990. Between 1990 and 2007 (when emissions peaked) there was a general increasing trend, with some fluctuations year to year. After this peak, emissions declined most years, other than a period of increase between 2013 and 2017. The impact of the COVID-19 pandemic means emissions are estimated to have been around 15 per cent lower in 2021 than in 1990.
Road transport (in particular, passenger cars) is the most significant source of emissions in the transport sector and accounted for about 90 per cent of the UK’s carbon dioxide emissions in 2021; and the changes which have been seen since 1990 are heavily influenced by this category. Motor vehicle traffic volumes have generally increased throughout this period, other than a fall seen between 2007 and 2010 following the recession. The COVID-19 pandemic has also had a dramatic impact on the level of road traffic in the last two years, with motor vehicles seeing a fall in total vehicle kilometres of around 21 per cent in 2020 from 2019, and the 2021 total was still 12 per cent lower than in 2019.
With lower petrol consumption outweighing an increase in diesel consumption and improvements in fuel efficiency of both petrol and diesel cars, the volume of emissions from passenger cars has generally decreased since the mid-2000s although (pre-pandemic) this has been partially offset by an increase in emissions from light commercial vehicles. Emissions of carbon dioxide are closely related to the amount of fuel used, whilst nitrous oxide and methane emissions are influenced more by the vehicle type and age.
Source: 2021 UK Greenhouse Gas Emissions, Final Figures
Latest figures show that territorial carbon dioxide emissions are provisionally estimated to have decreased by 2.4 per cent (8.1 Mt) in 2022 from 2021, and total greenhouse gas emissions by 2.2 per cent (9.4 MtCO2e). Total greenhouse gas emissions are estimated to be 7.4 per cent lower than those in 2019, which is a decrease of 33.4 MtCO2e. At 417.1 MtCO2e, greenhouse gas emissions in the UK in 2022 were 48.7 per cent lower than in 1990. Because these provisional estimates are based on energy data it is only possible to make estimates of carbon dioxide emissions from different source sectors and not estimates of other gases, so the rest of this section presents the trends in carbon dioxide emissions only.
In 2020 transport was significantly impacted by COVID-19, as people were instructed to stay at home as much as possible. In 2021, COVID-19 restrictions were eased, and people were able to travel more freely. Following on from this, in 2022, all restrictions were removed, resulting in consecutive years of increasing territorial carbon dioxide emissions from the transport sector to 112.5 Mt, a 3.8 per cent (4.2 Mt) rise from 2021, yet 7.7 per cent (9.4 Mt) lower than in 2019. In 2022 transport accounted for 34.0 per cent of all territorial carbon dioxide emissions, compared to 30.9 per cent in 2020 and 34.0 per cent in 2019 (pre-pandemic). The large majority of emissions from transport are from road transport.
Primarily as a result of a continual growth in vehicle kilometres travelled on roads, transport carbon dioxide grew to a peak in 2007, 7.8 per cent higher than in 1990. Since then, emissions from this sector had fallen back to around 1990 levels up until 2019, driven mainly by improvements in new car fuel efficiency, as well as lower traffic growth than in previous years as a result of a dip following the 2008/2009 recession.
Source: 2022 UK Greenhouse Gas Emissions, Provisional Figures
Q2) Are road traffic emissions forecast to fall?
A2) Yes. Despite traffic levels in England and Wales being forecast to rise by between 8 and 54 per cent between 2025 and 2060, road traffic emissions are forecast to fall.
Within these forecasts, seven different plausible scenarios have been constructed that reflect the uncertainty in the key drivers of road traffic demand. Carbon Dioxide equivalent (CO2e) emissions are projected to fall significantly in all scenarios. This is largely driven by the anticipated uptake of Electric Vehicles (EVs). The three ambitious EV uptake scenarios are the Technology, Mode-balanced Decarbonisation and Vehicle-led Decarbonisation scenarios. They all assume delivery of the ambition to phase out petrol and diesel cars and van sales by 2035, and the implementation of vehicle decarbonisation policies such as zero emission vehicle mandates. The Core, Low Economy, High Economy, Behavioural Change and Regional Scenarios are based on existing firm and funded policies only. The smallest reduction in CO2e emissions is a reduction of 38 per cent in the High Economy Scenario, which assumes high rates of growth in population, GDP and employment levels. The largest reduction is 98 per cent in the Mode-balanced Decarbonisation Scenario, which assumes a high and fast uptake of EVs and an increased share of public transport relative to the Core Scenario.
Nitrogen Oxides (NOx) and particulate (PM10) emissions follow broadly similar trends with NOx reducing by between 61 per cent (in the High Economy Scenario) and 98 per cent (in the Mode-balanced Decarbonisation Scenario) between 2025 and 2060. For PM10, the range is a reduction of between 49 per cent (in the High Economy Scenario) and 98 per cent (in the Mode-balanced Decarbonisation Scenario) over the same period.
Source: National Road Traffic Projections 2022
Q3) What are the future limits for CO2 emissions for new cars?
A3) The European Commission sets an EU fleet average target that must be met by the EU fleet. For cars, this target is currently 95g CO2/km in 2020. For vans, the target is 147g CO2/km in 2020.
These targets will be converted into Worldwide Harmonised Light Vehicle Test Procedure CO2 emissions targets in 2021 following the change in the vehicle CO2 test procedure, and the 2021 actual emissions will represent the new baseline. Manufacturers will then have to meet a 15 per cent reduction for cars and vans by 2025, and a 37.5 per cent reduction for cars and a 31 per cent reduction for vans by 2030, both against this 2021 baseline.
Manufacturers receive individual targets that are set according to the mass of their fleet. Only the fleet average is regulated, so manufacturers are able to make vehicles with emissions above the EU target provided these are balanced by vehicles below. Manufacturers with heavier fleets receive individual targets above the EU target; manufacturers with lighter fleets receive targets below the EU target.
The UK has now left the EU and the government is currently consulting on the regulation of CO2 emission performance standards for new passenger cars and light commercial vehicles (vans) in the UK from 1 January 2021.
Full details of the consultation can be viewed here.
Q4) What is the Worldwide Harmonised Light Vehicle Test Procedure (WLTP)?
A4) The Worldwide Harmonised Light Vehicle Test Procedure (WLTP) is a new laboratory test developed by the European Union which aims to provide a closer representation of ‘real-world’ fuel consumption and CO2 figures from passenger cars, as well as their pollutant emissions. The old lab test – called the New European Driving Cycle (NEDC) – was designed in the 1980s and due to evolutions in technology and driving conditions had become outdated.
Full details about the new testing procedure can be viewed here.
Q5) How much CO2 does the average new UK car produce ?
A5) In the UK the average CO2 emissions for cars registered for the first time in 2021 was 119.8g CO2/km using the WLTP measure, down 11.2 per cent compared with 2020. There has been a notable shift towards registering new zero emission vehicles from late 2020 onwards which has contributed to the recent reduction.
Source: Vehicle Licensing Statistics: 2021
Q6) What are the average CO2 emissions of new cars by fuel type?
A6) Using the WLTP measure, the average CO2 emissions for new car registrations in 2021 from different fuel types were as follows:
- petrol cars had emissions of 143.9g CO2/km, down 3 per cent compared to 2020
- diesel cars had emissions of 160.9g CO2/km, down 2 per cent compared to 2020
- hybrid electric (petrol) cars had emissions of 126.4g CO2/km, up 1 per cent compared to 2020
- plug-in hybrid electric (petrol) cars had emissions of 39.0g CO2/km, down 8 per cent compared to 2020
Source: Vehicle Licensing Statistics: 2021
Q7) What is the proportion of the new car market by fuel type?
A7) The 2022 new car registration figures reveal how electrification is changing the kinds of vehicles new-car buyers are choosing. Battery Electric Vehicles (BEVs) comprised 16.6 per cent of registrations, surpassing diesel for the first time to become the second most popular powertrain after petrol. Meanwhile, plug-in hybrids (PHEVs) saw their annual share decline to 6.3 per cent, meaning that combined, all plug-in vehicles accounted for 22.9 per cent of new registrations in 2022 – a record high, although a smaller increase in overall market share than recorded in previous years. Hybrid electric vehicles (HEVs) also enjoyed growth, rising to an 11.6 per cent market share for the year
Diesel share of the new car market has fallen in each of the past eight years. Diesel volumes fell 38.9 per cent in 2022 and their market share declined from 8.2 per cent in 2021 to 5.1 per cent in 2022.
In 2000, petrol-fuelled cars represented over 85 per cent of the total market. That level has fallen markedly in recent years. However, petrol-fuelled cars have had a larger share of the new car market than diesel cars for the last eight years and their share of the new car market stood at 42.3 per cent in 2022. This is down from 46.3 per cent in 2021.
In November 2020, it was announced that sales of new petrol and diesel cars and vans will end by 2030. However, there will be a continuation of sales of “hybrid cars and vans that can drive a significant distance with no carbon coming out of the tailpipe until 2035″.
Source: Society of Motor Manufacturers and Traders – New Car Registrations
Q8) Is the number of diesel cars in Great Britain falling?
A8) Yes. In 2021 there were 11.57 million diesel cars on the roads. This compares with 11.93 million a year earlier. This is the third consecutive year of decline in the number of licensed diesel cars with numbers previously having risen in every year since records began in 1994 to 2018.
The proportion of diesel cars on Britain’s roads has also now fallen for the past four years. After holding a record share of 39.6 per cent in 2017, it has subsequently fallen to 36.3 per cent in 2021.
Source: Department for Transport table VEH1103
The number of new diesel cars sold in 2022 also fell markedly compared to the previous year. 82,981 new diesel cars were sold in 2022, down 38.9 per cent on the 135,773 sold in 2021.
Source: Society of Motor Manufacturers and Traders – New Car Registrations
Since peaking in 2016, diesel car registrations have decreased by 85 per cent over the past 5 years.
Source: Vehicle Licensing Statistics: 2021
Q9) Is the sale of new petrol and diesel cars and vans to be banned in the future?
A9) Yes. In November 2020, the former Prime Minister, Boris Johnson, announced that sales of new petrol and diesel cars and vans will end by 2030. The announcement came as part of a 10-point plan for a “green industrial revolution”.
However, there will be a continuation of sales of “hybrid cars and vans that can drive a significant distance with no carbon coming out of the tailpipe until 2035″.
Originally there had been proposals to ban the sale of conventionally-powered cars and vans by 2040 but this date has now been brought forward.
The RAC Foundation’s response to the announcement can be viewed here.
Q10) What are alternatively-fuelled vehicles?
A10) The internal combustion engine (ICE) has dominated road transport over the past century but with a need to tackle climate change and end our reliance on fossil fuels, there is an environmental and an economic imperative to do things differently.
Alternatively-fuelled vehicles (AFVs) are any vehicles that run on something other than just petrol or diesel. They include:-
Battery Electric Vehicles (BEVs)
These vehicles are wholly driven by an electric motor, powered by a battery that can be plugged in to the mains. There is no combustion engine and hence zero emissions at the tailpipe.
Hybrid Electric Vehicles (HEVs)
These vehicles are powered by a traditional ICE – either petrol or diesel – as well as an electric battery. The battery is charged using excess energy from the ICE, as well as by reclaiming the car’s kinetic energy when it brakes.
Plug-in Hybrid Electric Vehicles (PHEVs)
Plug-in Hybrid vehicles combine both a plug-in battery pack and an electric motor with a traditional ICE. Both the electric motor and the ICE can drive the wheels and at any time, it can be running on the battery alone, on the ICE alone, or on a combination of the two.
Range Extended Electric Vehicles (REEVs)
These are battery electric vehicles that run on electricity but employ an auxiliary power unit (known as a range extender). The range extender (typically a small petrol ICE) drives an electric generator which will recharge a car’s battery. The range extender does not drive the vehicle’s wheels.
Hydrogen and Fuel Cell Vehicles (FCVs)
Fuel cells are devices that convert chemical energy (in this case compressed hydrogen) directly into electrical energy. This produces electricity to power the vehicle. In most hydrogen fuel cell cars, a high-power fuel cell and motor combination provide propulsion in place of an ICE.
Other Gas-Fuelled Vehicles
Various other gases can be used in an alternative ICE to provide motive power. These include liquefied petroleum gas (LPG) and natural gas in compressed (CNG) or liquefied (LNG) forms.
Biodiesel and Bioethanol Vehicles
These are vehicles that run on biofuels – either biodiesel (made from vegetable or animal oil) or bioethanol (an alcohol made from plants). Bioethanol can be blended with petrol and used to power petrol engines with no modification. Similarly, biodiesel can be blended with diesel to run diesel cars.
Q11) What is involved in switching to an electric car and will it save me money if I switch from a current petrol or diesel car?
A11) A Beginners Guide to Going Electric, produced by Electrifying.com and the Department for Transport can be viewed here. The guide helps drivers understand what is involved in switching to an electric car and provides practical advice and top tips.
A free app called EV8 Switch calculates how much money UK drivers could save by switching to an electric vehicle compared to their current petrol or diesel vehicle, along with details on the carbon dioxide (CO2) savings and air quality improvements they could achieve.
A Fuel Calculator is also available on the RAC Foundation website. This cost per mile calculator demonstrates fuel and electricity costs for a specific type of car for a particular type of journey.
Q12) How many cars are powered by petrol, diesel and alternative fuels?
A12) Of the 31.9 million cars licensed in Great Britain at the end of 2021, 18.7 million were petrol powered, 11.6 million were diesel powered and 1.6 million alternatively-fuelled.
Source: Department for Transport table VEH1103
Q13) And of the alternatively-fuelled cars, how many are hybrid cars, plug-in hybrids and electric cars?
A13) The vast majority of alternatively-fuelled cars licensed at the end of 2021 were either hybrid electric cars, plug-in hybrid electric cars or battery electric cars. A small proportion were range extended electric cars or gas powered.
At the end of 2021, there were 913,000 hybrid electric cars registered; 308,000 plug-in hybrids; 375,000 battery cars; 9,700 range extended cars; 200 fuel cell cars; 23,900 gas powered cars; and 300 others
Source: Department for Transport table VEH1103
Q14) What are the most popular plug-in vehicles on the UK roads?
A14) The latest data on plug-in vehicles on the UK’s roads can be viewed here.
The chart plots the top ten plug-in hybrid and pure battery-electric cars, vans and taxis that are licensed in the UK.
Q15) How many public electric vehicle charging devices are available in the UK?
A15) As of 1 April 2023, there were 40,150 public electric vehicle charging devices installed in the UK, within which:
Charging Speed:
- 7,647 were rated “rapid” devices or above, this represents 19 per cent of all charging devices
- 22,338 were rated “fast” chargers, this represents 56 per cent of all charging devices
Location:
- 19,044 were designated as “destination” chargers, this represents 47 per cent of all charging devices
- 13,571 were designated as “on street” chargers, this represents 34 per cent of all charging devices
Compared to 1 January 2023:
- total installed devices increased by 3,095, an increase of 8 per cent
- rapid charging or above devices increased by 760, an increase of 11 per cent
- there was an increase in total charging devices and those rated rapid or above in all regions of the UK
Source: Electric Vehicle Charging Device Statistics: April 2023
Q16) Is there an even regional distribution of charging devices?
A16) No, there is an uneven geographical distribution of charging devices within the UK. Some UK local authorities have bid for UK Government funding for charging devices, and others have not. Most of the provision of this infrastructure has been market-led, with individual charging networks and other businesses (such as hotels) choosing where to install devices.
London and Scotland have the highest level of charging provision per 100,000 of population, with 145 and 72 devices per 100,000 respectively. In comparison, the average provision in the UK is 60 per 100,000.
Northern Ireland has the lowest level of charging device provision in the UK, with 20 devices per 100,000, followed by the North West and Yorkshire and the Humber with 33 and 37 devices per 100,000 respectively.
Scotland has the highest rate of rapid device provision of 18.4 rapid or quicker devices per 100,000, whilst the average provision in the UK is 11.4 per 100,000. Rapid or quicker device provision is lowest for Northern Ireland with 1.9 rapid or quicker devices per 100,000. North West and East of England were the second and third lowest regions with 9 and 9.7 rapid or quicker devices per 100,000 respectively.
Details of the number of public charging devices per 100,000 of population by UK country and region are shown in the publication below.
Source: Electric Vehicle Charging Device Statistics: April 2023
Q17) Where can I find information on the availability of electric vehicle charge points?
A17) There are a number of websites that that help electric vehicle drivers locate and navigate to their nearest electric vehicle charging point.
One such site is Zapmap which is a UK-wide map of electric vehicle charging points. Drivers can use the site to search and filter for electric vehicle charging points, as well as plan electric routes with the smart route planner.
In addition, many local authorities and public venues provide information on electric vehicle charging points within their area on their website. Here is a typical example from Bournemouth Christchurch & Poole council.
Q18) How do you identify cars with the lowest CO2 emissions?
A18) There is a tool on the gov.uk website to compare the fuel consumption, CO2 emissions and tax bands for new and used cars.
As well as using less fuel and paying less car tax, more efficient cars also emit lower CO2 emissions. Car showrooms display environmental labels showing the running costs, tailpipe emissions, fuel economy and VED rates of new cars. The labels make it easy to compare different cars and show a rating from band A (green) to band M (red), with A having the lowest CO2 emissions and M the highest.
An example environmental label can be viewed here.
Q19) How can I cut my vehicle’s fuel consumption - and hence CO2 emissions - when driving my car?
A19) There are a few easy things that you can do when you drive and look after your car to help reduce the amount of fuel you burn and so cut down on CO2 emissions. The key is to reduce the amount of work your engine has to do, because the greater the workload, the more fuel is burned – so the higher the CO2 emissions. By following the smarter driving tips below you could cut your CO2 emissions by up to 15 per cent – equivalent to an annual fuel saving of up to one month per year.
Before you set off:-
- Check your tyres are at the correct pressure
- Clear out any extra weight
- Have your vehicle serviced regularly
- Remove any unused roof racks and roof boxes
- Plan your route to avoid stop/start traffic conditions
While driving:-
- Drive at an appropriate speed
- Speed up and slow down smoothly
- Change gears at lower revs
- Avoid leaving your engine running
- Don’t use air conditioning unless you really need it
Further advice can be found in the RAC Foundation’s Eco-driving leaflet.
Q20) Can the UK’s climate change goals be achieved without drivers travelling less overall?
A20) Yes. The reduction in total carbon emissions from cars necessary to meet the UK’s climate change goals could be achieved without drivers travelling less overall but this would require big changes in other areas.
The Climate Change Committee’s Balanced Net Zero Pathway plots a course to net zero that’s compliant with its Sixth Carbon Budget (2033-2037). This requires annual CO2 emissions from cars to fall from about 57 million tonnes in 2021 to around 34 million tonnes by 2030.This is a reduction of 40 per cent.
Modelling by the RAC Foundation indicates that this reduction might be achieved by many possible scenarios. However, if the driving patterns of tens of millions of car owners are to go unchanged, then three other key factors will determine whether the required cuts in carbon emissions are likely to be met:-
- The take up of plug-in battery-electric cars,
- The proportion of car-driven miles accounted for by these battery-electric vehicles, and,
- The rate of departure of petrol and diesel cars from the UK’s vehicle fleet.
Further details can be viewed here.
Source: Is it necessary to reduce car mileage to meet our carbon emission goals?
Q21) How is the vehicle tax rate for a car assessed?
A21) Car vehicle tax rates are based on either engine size or fuel type and CO2 emissions, depending on when the vehicle was registered. (Other types of vehicle have their own rates).
1) For cars registered before 1 March 2001, the rate of vehicle tax is based on engine size.
2) For cars registered between 1 March 2001 and 31 March 2017, the rate of vehicle tax is based on fuel types and CO2 emissions. The lower a car’s emissions, the lower the vehicle tax payable on it.
3) For cars registered after 1 April 2017, the rate of vehicle tax is based on a vehicle’s CO2 emissions in the first year of registration.
Full details can be viewed here.
Q22) How many licensed cars in Great Britain are in each CO2 emission band?
A22) Prior to 2011, over 90 per cent of cars registered for the first time each year had emissions above 110 g CO2/km. This percentage had dropped to 59 per cent by 2015, following increases in new ultra low emission vehicles and hybrid electric vehicles registrations. A market shift to registering larger cars (eg SUVs) began to reverse this trend between 2015 and 2019 but there was a marked shift back towards lower emission vehicles in the last two quarters of 2019.
The number, and percentages, of vehicles in each CO2 emission band can be viewed in Department for Transport table VEH0206.
Q23) What about local air pollutants?
A23) It is estimated that in the UK poor air quality currently reduces average life expectancy at birth by six months. Transport is a major source of air pollution in the urban areas of the UK and much of Europe. As such, it has a significant role to play in reducing the risks to health, the environment and quality of life.
In the UK it is estimated that road transport contributes 20–30% of national emissions of air pollutants. However, it plays a much greater role in air pollution problems, because it is concentrated on the road network in the country’s towns and cities. Of the 600 local Air Quality Management Areas declared in the UK – areas which breach UK national air quality objectives – some 95% are a result of transport activity. The cost of this urban transport-related air pollution to human health is estimated at between £4.5 billion and £10 billion annually to the UK economy.
Road vehicles are responsible respectively for 33%, 15% and 18% of the total NOx, PM10 and PM2.5 emissions nationally. Whilst between 1998 and 2011, overall NOx emissions from road transport reduced by 60%, PM10 by 39% and PM2.5 by 46%, the change in emissions does vary between the vehicle types. NOx emissions from petrol cars have reduced by some 90% over this period, whereas emissions from diesel cars have actually risen by 250%. This dramatic difference is a result of a rapid growth in the number of diesel cars in the parc, and relatively higher NOx emissions of diesel vehicles compared to petrol vehicles.
Source: Air Quality and Road Transport: Impacts and Solutions
Q24) What can be done to reduce or mitigate the impact of local air pollution?
A24) Over the past two decades, consumers have increasingly been buying diesel cars because of the better fuel consumption they achieve compared to petrol powered cars and lower rates of Vehicle Excise Duty and company car tax incentives, which both reward low-CO2 options.
On a like for like basis, diesels emit fewer CO2 emissions than petrol cars. However, diesel cars have also historically tended to emit significantly more nitrogen oxide (NOx) than petrol cars which – along with particulate matter (PM) – is linked to poor air quality and health issues.
Over recent years so-called Euro standards have helped achieve significant reductions in PM emissions from both petrol and diesel cars. But, as far as diesels are concerned, these have not been matched by falls in NOx. Only now do the latest set of Euro 6 standards – the forthcoming Euro 6d which will include measurements of real-world driving emissions as well as lab-based figures – offer the prospect of a reduction in this too. But because cars have an average life span of more than a decade it will take several years for the newer, cleaner, models to work their way through the fleet.
A 2014 report for the RAC Foundation by the environmental consultants Ricardo-AEA recommended Ministers should consider introducing a new scrappage scheme aimed at taking the oldest and most polluting diesel cars off the road. However, subsequent work by the RAC Foundation in March 2016 and March 2017 concluded that neither a national scrappage scheme nor a targeted scrappage scheme offered the realistic prospect of making a significant improvement to air quality on a cost effective basis. The problem is less about whether a diesel car is old, but more about where diesel cars are used and how much. In the absence of adequate location and mileage data designing a workable scheme would be very challenging.
Source: Road Transport and Air Pollution – Where are we now?
Q25) What are the Government’s plans to improve air quality by reducing nitrogen dioxide levels in the UK?
A25) The UK Plan for Tackling Roadside Nitrogen Dioxide Concentrations (2017 plan) produced by the Department for Environment, Food & Rural Affairs and the Department for Transport outlined how councils with the worst levels of air pollution at busy road junctions and hotspots needed to take robust action to reduce air pollution.
In March 2018, the government legally directed 33 local authorities to develop a feasibility study. These local authorities had been identified in 2017 plan as having shorter term NO2 exceedances, with projected compliance with legal limits by 2021.
A Supplement to the 2017 Plan was issued in October 2018 and set out the next steps the government was taking in relation to each of these 33 local authorities. The Supplement can be viewed here.
Q26) What is the Ultra Low Emission Zone that operates in London?
A26) The Ultra Low Emission Zone (ULEZ) is an area in London where the most polluting vehicles must pay a charge in order to use the roads. It started operating on 8 April 2019 and initially covered the same area as the existing Congestion Charge. From 25 October 2021, the ULEZ was expanded to include all the roads within the North and South Circular Roads. The ULEZ is to be expanded across all London boroughs from 29 August 2023.
Most vehicles within the expanded zone now need to meet the ULEZ emissions standards or pay a daily charge to travel within the area of the ULEZ. Petrol cars that meet the ULEZ standards are generally those first registered with the DVLA after 2005, although cars that meet the standards have been available since 2001. Diesel cars that meet the standards are generally those first registered with the DVLA after September 2015.
If vehicles are non-compliant then there is a daily charge of £12.50 for cars, vans and motorbikes and £100 for buses, coaches and lorries. The charges are in addition to the Congestion Charge.
Full details of the ULEZ can be viewed here.
The Mayor of London has launched a new £110m scrappage scheme providing financial assistance to help eligible Londoners scrap their highest polluting vehicles to prepare for the expansion of the ULEZ across all London boroughs from 29 August 2023. Londoners receiving certain low-income or disability benefits can apply to the Mayor of London’s £110 million scrappage scheme. Eligible applicants could receive a payment to scrap their vehicle, or choose a lower payment plus one or two TfL Annual Bus & Tram passes worth more than the payment alone. London-based sole traders, micro-businesses (10 or fewer employees) and registered charities will also be able to apply to scrap or retrofit a van or minibus.
Full details of the scrappage scheme can be viewed here.
Q27) How can I check if my vehicle meets the ULEZ standard in London or whether I need to pay the charge?
A27) Use the checker that can be found here.
Q28) Are any other cities introducing Clean Air Zones?
A28) Yes. There are now a number of confirmed and proposed clean air schemes in UK towns and cities aimed at reducing harmful emissions from road transport which contribute to poor air quality. The majority of these schemes are Clean Air Zones (CAZs) which have restrictions on the type and age of vehicles that are allowed to enter them. Drivers of vehicles allowed to enter CAZs may or may not have to pay a charge to do so.
Schemes are currently operating in Bath, Birmingham, Bradford, Bristol, Portsmouth, Sheffield and Tyneside (Newcastle and Gateshead). The scheme that was due to be introduced in Greater Manchester is under review.
The RAC Foundation has compiled a map showing where schemes are confirmed and under consideration. The map also shows those locations which considered a clean air scheme but are now compliant.
The map can be viewed here.
Q29) How can I check if I will be charged to drive in a Clean Air Zone?
A29) Use the service here to find out if there will be a daily charge to drive your vehicle in a Clean Air Zone.
Q30) How much petrol and diesel is sold each year?
A30) Sales of petrol reached a peak of 32.8 billion litres in 1990, equivalent to a 72 per cent market share of transport fuels. Sales subsequently fell every year (with the exception of 1998) until 2018 but in 2019, sales rose to 16.9 billion litres compared to 16.6 billion litres in 2018.
Petrol sales during 2020 were, of course, affected by the coronavirus (COVID-19) pandemic in the UK with 13.1 billion litres of petrol sold. However, sales increased in 2021 to 14.7 billion litres of petrol although this was still below the 2019 level.
Until recently, barring a short decline in 2009, diesel has seen an average annual growth rate of 4 per cent in the last three decades. In 2018, diesel sales in the UK set a new record of 30.5 billion litres. However, sales of diesel fell in 2019 to 30 billion litres although this still accounted for about 64 per cent of total road fuel sales.
As with petrol sales, diesel sales were also affected by the coronavirus (COVID-19) pandemic in the UK in 2020 with 25.1 billion litres of diesel fuel sold. However, sales increased in 2021 to 27.2 billion litres of diesel fuel although this was also still below the 2019 level.
The volume of petrol and diesel consumed in the UK year-by-year since 1990 can be viewed here.
Q31) When was E10 petrol introduced in the UK and will my car be able to run on it?
A31) E10 petrol was released to the public in September 2021.
E10 has up to 10 per cent ethanol compared with a maximum of 5 per cent in E5, meaning that standard grade petrol at the pumps has a higher bio-fuel content than the current E5. However, the new fuel has a lower energy content than E5 meaning drivers will do slightly fewer miles per gallon. The move is designed to help cut carbon emissions from fossil fuels.
There are nineteen million petrol cars in the country, the vast majority of which will be compatible with E10. However, the RAC Foundation estimates that around half a million cars – a mixture of both classic vehicles and everyday runarounds – will not be able to use E10 because the it can damage components. Instead they will need the super grade of E5 petrol which will still be available on many forecourts though at a higher price than the new standard E10.
RAC Foundation analysis suggests that some older VW Golfs, Mazda MX5s and Nissan Micras will be amongst those cars not able to run on E10.
A vehicle checker launched by the government gives a rough idea whether their vehicles are able to take the new green fuel or not. However, in many cases drivers will have to check with their vehicle’s manufacturer.
The government says the introduction of E10 on “UK roads could cut transport carbon dioxide (CO2) emissions by 750,000 tonnes a year – the equivalent of taking 350,000 cars off the road, or all the cars in North Yorkshire.” However, the official impact assessment of bringing in E10 says there will be additional costs for drivers over the next ten years:-
1) decreased miles per gallon cause an increase in fuel supply costs of £200m for fuel consumers (some of which are businesses)
2) costs to incompatible vehicle owners (from having to buy ‘super’ grade petrol meeting the E5 fuel spec) of £169m, and transition costs of fuel labelling and communications of £1m in year 1.
Q32) What is the UK’s average new car fuel consumption?
A32) The UK’s average new car fuel consumption in 2020 was 52.6 miles-per-gallon (mpg) (5.4 litres per 100 km) for petrol vehicles and 56.1 mpg for diesel vehicles (5.0 litres per 100 km).
Average mpg figures for petrol cars were 6 per cent up on the 2019 figure and 1 per cent up for diesel cars. However, since 1997, there has been a 52 per cent increase in the average mpg figure for petrol vehicles and a 39 per cent increase in the average mpg figure for diesel vehicles.
The figures include pure petrol or diesel fuelled vehicles only; hybrid and alternative-fuelled vehicles are excluded.
The data can be viewed in the Department for Transport table ENV0103.
Q33) Are the manufacturers' official fuel economy figures accurate?
A33) Experts have long questioned the validity of the official fuel economy figures which are measured in the laboratory and routinely quoted by car manufacturers. While a standardised test allows comparisons to be made between vehicles there has been concern that what is recorded in the laboratory is often at odds with what happens on the road where worse results are often recorded, particularly for smaller cars. For example, in November 2017, the International Council on Clean Transportation (ICCT) concluded that the average gap between official fuel consumption figures and actual fuel use for new cars in the EU had reached 42 per cent.
The new Worldwide Harmonised Light Vehicle Test Procedure (WLTP) will provide a far more realistic representation of conditions encountered on the road than the old testing procedures and should provide more accurate figures. But the new test will not cover all possible variations and factors such as driving behaviour, traffic and weather conditions will mean that there will still be a difference between fuel economy figures measured in laboratory conditions and the real world.
Q34) How can I check a vehicle’s average fuel consumption?
A34) Use the Vehicle Certification Agency database here, though this is based on lab tests.
(Please note this database only includes information on new and used cars that were first registered on or after 1 March 2001).
Q35) How many front gardens have been concreted over to provide parking for cars?
A35) Figures analysed by the RAC Foundation show around 80 per cent of Britain’s 26 million dwellings were built with a front plot. Almost a third of these plots have been turned into hardstanding. This means seven million front gardens now contain concrete and cars rather than flowers and grass, a total roughly equivalent to 100 Hyde Parks or 72 Oylmpic Parks.
Houses built between 1919 and 1964 are most likely to have a front garden and hence it is these properties that are most likely to have seen the change.